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ABSTRACT

The past decades have seen significant advancements in graph machine learning, with nu-

merous sophisticated models and algorithms crafted for a variety of learning tasks, including

ranking, classification, regression, and anomaly detection. Generally, most existing works

focus on addressing the question: given a graph, what is the best way to mine it?

Despite their remarkable achievements, little attention is paid to the graph data itself,

which could be noisy, huge, and imbalanced at every stage of the data collection process.

In this thesis, our focus is on the relatively unexplored realm of graph data, intending to

enhance various downstream graph machine learning tasks. We term this line of research

optimal graph learning, aiming to identify the most effective graph data to improve efficiency,

effectiveness, and expressiveness.

However, some unique challenges arise. First (formulation), it is not clear how to formulate

data optimization in a data-driven way, especially considering that the downstream tasks can

be versatile. Second (volume), the sheer volume of graph datasets can result in significant

time and space complexity for underlying optimization solutions. Third (pattern), capturing

various essential graph patterns at different granularities presents a challenge.

This thesis introduces our progress towards the optimal graph learning problem. Con-

cretely, we categorize our work into three directions: graph refinement, graph augmen-

tation, and graph distillation. For graph refinement, we developed (1) a pure data-driven

solution named GaSoliNe against noisy data and (2) Stager, a solution tailored for

addressing imbalanced data. For graph augmentation, we developed three augmentation

solutions: (1) ALT, enhancing broad models’ performance on graphs with arbitrary het-

erophily, (2) DisCo, which can generate realistic graphs based on the training graphs, and

(3) AuGLM , which incorporates the graph structure into the textual input so that the

language models can successfully handle the node classification task. For graph distillation,

we developed (1) a bilevel optimization-based solution named KiDD to shrink the size of

given graphs and, meanwhile, preserve the utility of training data and (2) graph rationale

discovery framework named FIG, which can find the critical subgraph in every given graph

to enhance the performance of graph-level performance.

Collectively, these contributions establish foundational progress toward data-centric graph

machine learning and demonstrate the value of optimizing graph data itself to improve

downstream task performance.

ii



To my parents, Yiying He and Shunping Xu.

iii



ACKNOWLEDGMENTS

This journey is long, and I would definitely like to express my gratitude to many.

I want to express my heartfelt gratitude to my advisor, Prof. Hanghang Tong, for his

intelligence, deep expertise, humility, and patience. Although I am not a top-talented stu-

dent, he has consistently placed his trust in me, invested time in my growth, and provided

invaluable opportunities. His research vision and academic rigor have profoundly shaped my

development, and I am sure they will continue to guide and inspire my future career.

I want to thank Prof. Jingrui He, the director of our sister lab. She and Prof. Tong make

the iDEA-iSAIL joint lab a true home for all the members.

I want to thank my thesis committee members, Prof. Arindam Banerjee, Dr. Yuzhong

Chen, Prof. Jiawei Han, and my advisor, Prof. Hanghang Tong. Their mentorship, insightful

feedback, and guidance have been essential to the development and successful completion of

this thesis.

I am grateful to all the lab members who shared this PhD journey with me. They are

my important collaborators and brainstorming partners. They are: Xing Su, Liangyue Li,

Chen Chen, Arun Reddy Nelakurthi, Shweta Jain, Yao Zhou, Dawei Zhou, Si Zhang, Xu

Liu, Boxin Du, Yuheng Zhang, Shengyu Feng, Yian Wang, Derek Wang, Qinghai Zhou, Jian

Kang, Ishika Agarwal, Blaine Hill, Yunyong Ko, Jun Wu, Lihui Liu, Dongqi Fu, Yikun Ban,

Yuchen Yan, Lecheng Zheng, Jun-Gi Jang, Baoyu Jing, Wenxuan Bao, Ziwei Wu, Tianxin

Wei, Yunzhe Qi, Eunice Chan, Xinrui He, Xinyu He, Isaac Joy, Zhining Liu, Hyunsik Yoo,

Xiao Lin, Zihao Li, Ruizhong Qiu, Zhichen Zeng, Mengting Ai, Sirui Chen, Gaotang Li, Ting-

Wei Li, Jiaru Zou, Xuying Ning, Xue Hu, Yaojing Wang, Ziye Zhu, Yu Wang, Yancheng

Wang, Hansheng Ren, Hao Wang, Haonan Wang, Haoran Li, Zihao Wang, Haobo Xu,

Tianwen Chen.

I want to extend my gratitude to my academic partners, collaborators, and mentors be-

yond the iDEA-iSAIL lab. I deeply value and appreciate our collaborations. They are Dr.

Yinglong Xia, Dr. Liang Xiong, Dr. Jiejun Xu, Prof. Kaize Ding, Prof. Yu-Xiong Wang,

Prof. Huan Liu, Dr. Yuzhong Chen, Dr. Yuhang Wu, Dr. Menghai Pan, Dr. Hao Yang, Dr.

Huiyuan Chen, Dr. Mahashweta Das, Dr. Qing Chen, Nan Chen, Wei Shuai, Guande Wu,

Dr. Nan Cao, Dr. Yada Zhu, Dr. Kommy Weldemariam, Prof. Tarek F. Abdelzaher, Prof.

Lei Ying, Dr. Xiran Fan, Dr. Chin-Chia Michael Yeh, Dr. Vivian Lai, Dr. Yan Zheng, Dr.

Minghua Xu, Dr. Kaveh Hassani, Dr. Hanqing Zeng, Dr. Michihiro Yasunaga, Dr. Limei

Wang, Dr. Ning Yao, Dr. Bo Long, Dr. Xiaoting Li.

iv



I want to thank Prof. Yanghua Xiao and the KW@FUDAN lab. Prof. Xiao is my advisor

for undergraduate research. He, along with senior members of the lab, offered hands-on

guidance when I was first introduced to academic research. Without their support, I might

not have had the opportunity to pursue a PhD.

Lastly, I would like to express my deepest gratitude to my family. My parents, Yiying

He and Shunping Xu, have unconditionally supported the PhD study of their only child,

thousands of miles away, for many years. Their selfless support and enduring belief in me

will always be the origin of my warmth. My gratitude certainly goes to my wife, Yunyun

He, who has stood by me with patience and understanding throughout the most intense

and demanding phases of my academic journey. She willingly embraced a life devoid of en-

tertainment during every ‘paper-submission’, ‘rebuttal’, ‘job-finding’, and ‘pre-presentation’

moment. Her unwavering trust and support have been my driving force toward greater and

more ambitious goals. I am also thankful for the smallest member of our family, Remy, our

golden hammie, whose companionship during countless late-night hours, as he ran on his

wheel beside me, brought me a quiet but resilient power.

v



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Thesis Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CHAPTER 2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Graph Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Graph Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Graph Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 3 GRAPH REFINEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Graph Sanitation with Application to Node Classification . . . . . . . . . . . 7
3.2 Generalized Few-Shot Node Classification . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 4 GRAPH AUGMENTATION . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Node Classification Beyond Homophily: Towards a General Solution . . . . . 46
4.2 Discrete-State Continuous-Time Diffusion for Graph Generation . . . . . . . 65
4.3 How to Make LMs Strong Node Classifiers? . . . . . . . . . . . . . . . . . . 95

CHAPTER 5 GRAPH DISTILLATION . . . . . . . . . . . . . . . . . . . . . . . . 115
5.1 Kernel Ridge Regression-based Graph Dataset Distillation . . . . . . . . . . 115
5.2 Fine-Grained Graph Rationalization . . . . . . . . . . . . . . . . . . . . . . . 135

CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . 153
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

vi



CHAPTER 1: INTRODUCTION

1.1 MOTIVATION

Graph mining has emerged as a cornerstone in a plethora of real-world applications, includ-

ing social network mining [1, 2, 3, 4, 5, 6, 7], brain connectivity analysis [8], computational

epidemiology [9], and financial analysis [10, 11]. The majority of existing works strive to ad-

dress the fundamental question: given a graph, what is the best model and/or algorithm to

mine it? Notable examples include (1) PageRank [12] and its variants [13, 14, 15, 16, 17, 18],

which measure node importance and proximity based on multiple weighted paths, (2) spectral

clustering [19], which partitions nodes into distinct groups by minimizing inter-cluster con-

nectivity and maximizing intra-cluster connectivity, and (3) graph neural networks (GNNs)

[20, 21, 22, 23, 24, 25, 26, 27], which learn node representations by aggregating information

from neighborhood nodes. All these approaches necessitate a given graph, encompassing

its topology and/or associated attribute information, as input for the corresponding mining

model.

Despite their remarkable achievements, several fundamental questions remain largely unan-

swered. For instance, where does the input graph originate? To what extent does the quality

of the given graph influence the effectiveness of the corresponding mining model? Can we

distill a smaller graph dataset without compromising performance on downstream tasks?

How can we enhance a broad spectrum of graph machine learning models to accommodate

varying heterophily patterns [28, 29] within a given graph? All the above data-centric ques-

tions can be summarized as a general but succinct one: what is the optimal graph for a

specific downstream task? We name this research problem as optimal graph learning.

However, some unique challenges arise for such a data-centric research problem. First

(formulation), it is not clear how to formulate the optimization objective of data in a data-

driven way, especially considering the versatile downstream tasks. For example, how can we

ensure the performance of a specific graph machine learning model can be improved after

the given graph is optimized? How can we ensure a family of graph machine learning models

(e.g., off-the-shelf graph neural networks) can uniformly benefit from the optimized graphs?

Second (volume), the given graph dataset can be huge and lead to high time and space com-

plexity of the underlying optimization solutions. For example, real-world graph data [30]

contains hundreds of thousands of graphs and nodes; thus, trivially treating the entire graph

data as an optimization variable is resource-intensive [31]. In addition, real-world graph data

typically exhibits sparse connectivity, yet many optimization-based solutions yield densely
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connected optimal graphs. Third (pattern), the graph patterns are critical at different gran-

ularities, e.g., locally every node has different homophily/heterophily tendencies against its

1-hop neighbors [32], which might affect the performance of downstream graph machine

learning models. In addition, for graph-level tasks, such as graph generation and graph clas-

sification [33, 34], some substructures are critical for the property of the whole graph, e.g.,

functional groups in molecule graphs [35, 36]. It remains unclear how to capture, preserve,

and emphasize these patterns within the optimal graph learning framework.

1.2 OVERVIEW OF THESIS RESEARCH

Figure 1.1: An overview of this thesis, optimal graph learning.

To address these challenges, my Ph.D. thesis proposes novel algorithms and solutions for

a broad spectrum of graph machine learning tasks, including node classification, graph clas-

sification, graph regression, and graph generation. Specifically, we delve into three distinct

sub-tasks: graph refinement, graph augmentation, and graph distillation. Figure 1.1

shows an overview of the challenges and tasks of this thesis proposal.

• Graph Refinement. Graph refinement refers to fixing the graphs with inherent flaws,

such as noise and label imbalance. This problem has been studied for a long time.

For example, NeuralSparse [37] and PTDNet [38] model the edge-dropping probabil-

ity using categorical and Bernoulli distributions, respectively, and drop edges based

on sampling strategies. In our completed work, we have proposed a flexible data-

driven framework named GaSoliNe [31] which can improve various graph mining

2



tasks against noisy and adversarially attacked graphs. We also have developed a meta-

learning and uncertainty-based solution Stager [39] to address the label imbalance

problem in node classification tasks.

• Graph Augmentation. Graph augmentation enriches the given graph data to improve

the downstream models’ performance. It has been widely used in various tasks, in-

cluding graph classification, node classification, and contrastive learning. For example,

it [40, 41] can be used to generate more training samples by mixing the features and

labels of existing training graphs. For this task, we have developed 3 data-driven solu-

tions named ALT [42], DisCo [43], and AuGLM . ALT decomposes the given graph

into two graphs with supplementary homophily/heterophily properties to improve var-

ious backbone graph neural networks’ performance on the node classification tasks.

DisCo is a discrete-state continuous-time graph generation framework that produces

realistic samples efficiently. AuGLM is a language model-based node classification

model whose core idea is to enhance the textual data via input graphs to empower the

language model for node classification.

• Graph Distillation. Graph distillation is a set of tasks shrinking the size of a given graph

dataset, either in terms of the number of nodes or the number of graphs. This direction

has been studied for both node-level datasets [44] and graph-level datasets [45] through

the bilevel optimization objective. Some of them [45] apply aggressive approximate

solutions to mitigate the computation overhead. In this direction, we have completed

a work named KiDD [46], which provides an exact and efficient solution to distill

graph-level datasets. We also developed FIG [47], which tackles the problem from

a rationalization perspective by identifying task-relevant subgraphs to improve graph

classification and regression performance maximally.
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CHAPTER 2: LITERATURE REVIEW

2.1 GRAPH REFINEMENT

Due to various factors such as fake connections [48], over-personalized users [49], and

construction heuristics, the given graph structure may not be optimal for downstream graph

learning tasks [50]. A subset of solutions that focus on the graph topology is termed graph

rewiring.

Several methods exist to rewire given graphs using various node similarity metrics. In

many cases, these metrics are learned from the given graph topology. For instance, ap-

proaches like GAUG [51] and IDGL [52] train edge predictors based on learned node embed-

dings. Furthermore, from an optimization perspective, it is feasible to directly incorporate

the graph data (e.g., adjacency matrix) itself as part of the optimization variables. Based

on that, the graph rewiring process is essentially guided by the optimization objective. A

notable example is TO-GNN [53], where loss functions include smoothness-related regular-

izations and gradient descent-based graph updates. Additionally, instead of optimizing the

graph itself, an intriguing idea is to optimize graph-related distributions (e.g., graph gen-

eration and edge-dropping distributions). After that, graph rewiring can be conducted by

sampling from those distributions. An exemplary work is LDS [54], which assumes that each

edge is sampled from an independent Bernoulli distribution. Other noteworthy works in this

domain include Bayesian-GCNN [55], GEN [56], NeuralSparse [37], and PTDNet [38].

In comparison to structure refinement, research on graph feature refinement has gained

less attention. In general, most of the work is developed based on feature rewriting. For

instance, AirGNN [57] regularizes the l21 norm between input node features and convoluted

node features to increase model tolerance against abnormal features. To handle missing

node features, a special case of suboptimal initial node features, feature propagation [58]

diffuses features from observed nodes to neighbors with missing features based on the heat

diffusion equation, essentially imputing missing node features with aggregated features from

neighboring nodes. GCNMF [59] explicitly formulates missing node features using Gaussian

mixture models whose parameters are inferred from downstream tasks. Efforts like SAT

[60] reconstruct missing features through the feature distribution inferred from the topology

distribution. To handle missing features in heterogeneous information networks, HGNN-AC

[61] imputes missing features from neighbor nodes’ topology-based node embeddings, while

HGCA [62] designs a feature augmenter trained to maximize agreement between augmented

node embeddings and actual node embeddings.
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2.2 GRAPH AUGMENTATION

A typical application of graph augmentation is addressing the issue of data scarcity [63].

One effective solution is to leverage unlabeled data to augment the limited labeled data.

Following the concept of pseudo-labeling, self-training [64] assigns labels to unlabeled data

based on a teacher model trained with limited labeled data, becoming a prevailing approach

for semi-supervised node classification in scenarios with limited training data. Among these

methods, Li et al. [65] first combine Graph Convolutional Networks (GCNs) with self-

training to expand supervision signals. CGCN [66] generates pseudo labels by combining

a variational graph auto-encoder with Gaussian mixture models. Furthermore, M3S [67]

proposes multi-stage self-training and utilizes a clustering method to eliminate potentially

incorrect pseudo labels. Similar concepts are also explored in [68]. Additionally, recent

research [69, 70] employs label propagation as the teacher model to generate pseudo labels

that encode valuable global structural knowledge.

Similar to self-training, co-training [71] has been investigated for augmenting training sets

with unlabeled data. It learns two classifiers using initial labeled data on two views and

allows them to label each other’s unlabeled data to augment the training data. Li et al.

[72] develop a novel multi-view semi-supervised learning method, Co-GCN, based on feature

masking, which unifies GCN and co-training into one framework.

Another approach to obtaining additional training examples [43] is to use an interpolation-

based data augmentation strategy, such as Mixup [73, 74, 75], to generate synthetic training

examples (i.e., node insertion) through feature mixing and label mixing. While graphs

have arbitrary structures, unlike images or natural sentences, identifying meaningful con-

nections between original and synthetic nodes remains a challenging task. Additionally, due

to the cascading effect of graph data, simply adding an edge can dramatically alter seman-

tic meanings. To address these challenges, Manifold Mixup [76] is applied to graph data

interpolation. For instance, GraphMix [77] trains a multi-layer perceptron (MLP) jointly

with GNNs via parameter sharing, where the MLP is learned based on Manifold Mixup and

pseudo-labeling, effectively training GNNs for semi-supervised node classification. Similarly,

Wang et al. [78] leverage the idea of Manifold Mixup and interpolate input features of both

nodes and graphs in the embedding space. These methods use a straightforward approach to

circumvent dealing with arbitrary structures by mixing graph representations learned from

GNNs.

For input-level graph data interpolation, ifMixup [79] targets the Manifold Intrusion issue

by first interpolating node features and edges based on feature mixing and graph generation.

Graph Transplant [40] utilizes graph rewiring to mix dissimilar-structured graphs by re-
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placing the destination subgraph with the source subgraph while preserving local structure.

G-Mixup [80] estimates the graphon of each class, performs mixup between graphons, and

conducts graph generation to generate interpolated graphs, improving the generalizability

and robustness of GNNs for semi-supervised graph classification.

2.3 GRAPH DISTILLATION

A popular line of graph distillation is to extract a small graph from a large graph, named

graph coarsening [81]. Its core idea of graph coarsening is to minimize a ‘quantity of interest’

between the input graph G and augmented graph G̃. For example, Jin et al. [82] propose to

minimize the spectral distance between G and G̃. GOREN [83] aims to maintain comparable

Laplace operators between G and G̃.
Beyond that, a set of tasks named dataset distillation [84, 85] has been widely studied

recently. Their goal is to find a small but informative dataset that preserves the training

utility from the given large dataset. Its application on graphs attracts decent attention

but has not been thoroughly studied. The optimization objective of two typical examples,

GCOND [44] and DosCond [45] is the difference of training gradients on the given graph G
and the target small graph G̃. Our complete work, KiDD [46]stands as one of the pioneering

endeavors in this area.

Beyond the above works, some methods that focus on interpretability and out-of-distribution

generation will highlight a critical subgraph, e.g., graph rationalization [35]. These endeavors

can also be regarded as solutions within the realm of graph distillation.
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CHAPTER 3: GRAPH REFINEMENT

3.1 GRAPH SANITATION WITH APPLICATION TO NODE CLASSIFICATION

3.1.1 Introduction

Graph mining has become the cornerstone in a wealth of real-world applications, such as

social network mining [1, 2, 86], brain connectivity analysis [8], computational epidemiol-

ogy [9], and financial analysis [10, 11]. For the vast majority of existing works, they essen-

tially aim to answer the following question, that is, given a graph, what is the best model

and/or algorithm to mine it? To name a few, PageRank [12] and its variants [13, 14, 15, 16]

measure the node importance and node proximity based on multiple weighted paths; spectral

clustering [19] minimizes inter-cluster connectivity and maximizes the intra-cluster connec-

tivity to partition nodes into different groups; graph neural networks (GNNs) [20, 21, 22, 23]

learn representation of nodes by aggregating information from the neighborhood. In all

these works and many more, they require a given graph, including its topology and/or the

associated attribute information, as part of the input of the corresponding mining model.

Despite tremendous success, some fundamental questions largely remain open, e.g., where

does the input graph come from at the first place? To what extent does the quality of the

given graph impact the effectiveness of the corresponding graph mining model? In response,

we introduce the graph sanitation problem, which aims to improve the initially provided

graph for a given graph mining model, to boost its performance maximally. The rationality

is as follows. In many existing graph mining works, the initially provided graph is typically

constructed manually based on some heuristics. The graph construction is often treated as

a pre-processing step, without the consideration of the specific mining task. Furthermore,

the initially constructed graph may be subject to various forms of contamination, including

missing information, noise, and even adversarial attacks [87, 88]. This suggests that there

may be an under-explored space for improving mining performance by learning a ‘better’

graph as input to the corresponding task.

There are several existing lines of work for modifying graphs. For example, network

imputation [89, 90, 91] and knowledge graph completion [92, 93, 94, 95, 96, 97] problems focus

on restoring missing links in a partially observed graph; connectivity optimization [98] and

computational immunization [99] problems manipulate the graph connectivity in a desired

way by changing the underlying topology; robust GNNs [100, 101, 102] utilize empirical

properties of a benign graph to remove or assign lower weights to the poisoned graph elements
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(e.g., contaminated edges).

The graph sanitation problem introduced in this paper is related to but bears a subtle

difference from the existing work in the following sense. Most, if not all, of these existing

works for modifying graphs assume the initially provided graph is impaired or perturbed

in a specific way, e.g., due to missing links, noise, or adversarial attacks. Some existing

works further impose certain assumptions on specific graph modification algorithms, such

as the low-rank assumption underlying many network imputation methods, the types of

attacks, and/or the empirical properties of the benign graph (e.g., topology sparsity, feature

smoothness) behind some robust graph neural networks (GNNs). In contrast, the proposed

graph sanitation problem does not make any such assumptions; instead, it pursues a different

design principle. That is, we aim to let the performance of the downstream data mining

task, measured on a validation set, dictate how we should optimally modify the initially

provided graph. This is crucial, as it not only ensures that the modified graph will directly

and maximally improve the mining performance, but also lends itself to being applied to a

variety of graph mining tasks.

Formally, we formulate the graph sanitation problem as a generic bilevel optimization

problem, where the lower-level optimization problem corresponds to the specific mining task,

and the upper-level optimization problem encodes the supervision to modify the provided

graph and maximize the improvement in mining performance. Based on this, we instantiate a

bilevel optimization problem using semi-supervised node classification with GNNs, where the

lower-level objective function represents the cross-entropy classification loss over the train-

ing data, and the upper-level objective function represents the loss over the validation data,

utilizing the mining model trained from the lower-level optimization problem. We propose

an effective solver (GaSoliNe) which adopts an efficient approximation of hyper-gradient

to guide the modification over the given graph. We carefully design the hyper-gradient ag-

gregation mechanism to avoid potential bias from a specific dataset split by aggregating the

hyper-gradient from different folds of data. GaSoliNe is versatile, and is equipped with

multiple variants, such as discretized vs. continuous modification, modifying graph topol-

ogy vs. feature. Comprehensive experiments demonstrate that (1) GaSoliNe is broadly

applicable to benefit different downstream node classifiers together with flexible choices of

variants and modification strategies, (2) GaSoliNe can significantly boost downstream

classifiers on both the original and contaminated graphs in various perturbation scenarios

and can work hand-in-hand with existing robust GNNs methods. For instance, in Table 3.1,

the proposed GaSoliNe significantly boosts GAT [21], SVD [100], and RGCN [103].
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Table 3.1: Node classification accuracy (mean±std) boosting of existing defense methods on
poisoned graphs (25% edges perturbed by metattack [104]) by the proposed GaSoliNe.

Data With GaSoliNe? GAT SVD RGCN

Cora
N 48.8±0.2 60.3±0.8 50.6±0.8
Y 63.7±0.6 79.7±0.6 62.6±0.6

Citeseer
N 62.4±0.7 49.5±0.8 55.5±1.4
Y 69.7±0.2 76.5±0.6 66.1±0.8

Polblogs
N 48.2±6.6 79.1±2.4 50.8±0.9
Y 70.8±0.6 89.2±0.7 67.7±0.3

Table 3.2: Instantiations of the graph sanitation problem over various mining tasks

Tasks Personalized PageRank [107, 108] Spectral Clustering [19, 109] Node Classification [110]

Llower minr qr
′(I− Ā)r+ (1− q)∥r− e∥2 minu u′Lu

s.t. u′Du = 1, Du ⊥ 1
minθ −

∑
i∈T
∑c

j=1 yij ln ŷij

Lupper minA

∑
x∈P,y∈N (1 + exp (r∗[x]− r∗[y])/w)−1 minA −u∗′Qu∗ minG −

∑
i∈V
∑c

j=1 yij ln ŷij

T none none training set T

Ytrain none none labels of training set Ytrain

V positive node set P ,
negative node set N

‘must-link’ setM,
‘cannot-link’ set C validation set V

Yvalid none none labels of validation set Yvalid

Remarks
normalized adjacency matrix Ā,

damping factor q, width parameter w,
preference vector e

Laplacian matrix L,
degree matrix D,

link constraints matrix Q

number of classes c,
predicted probability ŷij,
ground truth label yij

3.1.2 Problem Definition

A - Optimization-Based Graph Mining Models. For many graph mining models,

they can be formulated from the optimization perspective [105, 106] with a general goal to

find an optimal solution θ∗ so that a task-specific loss L(G, θ, T ,Ytrain) is minimized. Here,

T and Ytrain are the training set and the associated ground truth (e.g., class labels for the

classification task), which would be absent for the unsupervised graph mining tasks (e.g.,

clustering, ranking). We give three concrete examples next.

Example #1: personalized PageRank [13, 111] is a fundamental ranking model. When the

adjacency matrix of the underlying graph is symmetrically normalized, the ranking vector r

can be obtained as:

r∗ = argmin
r

qr′
(
I− Ā

)
r+ (1− q) ∥r− e∥2 , (3.1)

where Ā is the symmetrically normalized adjacency matrix; q ∈ (0, 1] is the damping factor;

e is the preference vector; the ranking vector r∗ is the solution of the ranking model (i.e.,
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θ∗ = r∗).

Example #2: spectral clustering [19] is a classic graph clustering model aiming to minimize

the normalized cut between clusters:

u∗ = argmin
u

u′Lu s.t. u′Du = 1, Du ⊥ 1u, (3.2)

where L is the Laplacian matrix, D is the diagonal degree matrix (i.e., D[i, i] =
∑

j A[i, j]),

1u is an all-one vector with the same size as u; the model solution θ∗ is the cluster indicator

vector u∗.

Example #3: node classification aims to construct a classification model based on the

graph topology A and feature X. A typical loss for node classification is cross-entropy (CE)

over the training set:

θ∗ = argmin
θ
−
∑
i∈T

c∑
j=1

yij ln ŷij, (3.3)

where c is the number of classes, yij is the ground truth indicating if node i belongs to class

j, T is the training set, ŷij = f(G, θ)[i, j] is the predicted probability that node i belongs

to class j by a classifier f(G, θ) parameterized by θ. For example, classifier f(G, θ) can be

a GNN whose trained model parameters form the solution θ∗.

Remarks. Both the standard personalized PageRank and spectral clustering are unsuper-

vised. Therefore, the training set T and its supervision Ytrain are absent in the corresponding

loss functions (i.e., Eq. (3.1) and (3.2), respectively). Nonetheless, personalized PageRank

and spectral clustering have been generalized to incorporate some forms of supervision fur-

ther, as we will show next.

B - Graph Sanitation: Formulation and Instantiations. Given an initial graph G

and an optimization-based graph mining model L(G, θ, T ,Ytrain), we aim to learn a modified

graph G̃ to boost the performance of the corresponding mining model. We name it as graph

sanitation problem. The basic idea is to let the mining performance on a validation set V
guide the modification process. Formally, the graph sanitation problem is defined as follows:

Problem 3.1. Graph Sanitation Problem

Given: (1) a graph G = {A,X}, (2) a mining task L(G, θ, T ,Ytrain), (3) a validation set

V and its supervision Yvalid, and (4) the sanitation budget B;

Find: A modified graph G̃ = {Ã, X̃} to boost the graph mining performance.
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We formulate Problem 3.1 as a bilevel optimization problem:

G̃ =argmin
G
Lupper (G, θ∗,V ,Yvalid) (3.4)

s.t. θ∗ = argminLlower (G, θ, T ,Ytrain) , D
(
G̃, G

)
≤ B (3.5)

where the lower-level optimization is to train the model θ∗ based on the training set T ; the
upper-level optimization aims to optimize the performance of the trained model θ∗ on the

validation set V , and there is no overlap between T and V ; the distance function D measures

the distance between two graphs. In this paper, we instantiate D(G̃, G) as
∥∥∥Ã−A

∥∥∥
1,1

or∥∥∥X̃−X
∥∥∥
1,1

based on the modification scenarios. Notice that the loss function at the upper

level Lupper might be different from the one at the lower level Llower. For example, Llower for
both personalized PageRank (Eq. (3.1)) and spectral clustering (Eq. (3.2)) does not involve

any supervision. However, Lupper for both models are designed to measure the performance

on a validation set with supervision and, therefore, should be different from Llower. We

elaborate on this next.

The proposed bilevel optimization problem in Eq. (3.4) is quite general. In principle, it is

applicable to any graph model with differentiable Lupper and Llower. We give its instantiations

with the three aforementioned mining tasks and summarize them in Table 3.2.

Instantiation #1: supervised PageRank. The original personalized PageRank [13] has

been generalized to encode pair-wised ranking preference [107, 108]. For graph sanitation

with supervised PageRank, the training set and its supervision is absent, and the lower-level

loss Llower is given in Eq. (3.1). The validation set V consists of a positive node set P and

a negative node set N . The supervision of the upper-level problem is that ranking scores

of nodes from P should be higher than that from N , i.e., r[x] > r[y], ∀x ∈ P ,∀y ∈ N .

Several choices for the upper-level loss Lupper exist. For example, we can use Wilcoxon-

Mann-Whitney loss [112]:

min
A

∑
x∈P,y∈N

(1 + exp (r∗[x]− r∗[y]) /w)−1 (3.6)

where w is the width parameter. It is worth mentioning that Eq. (3.6) only modifies graph

topology A. Although Eq. (3.6) does not contain variable A, r∗ is determined by A through

the lower-level problem.

Instantiation #2: supervised spectral clustering. A typical way to encode supervision in

spectral clustering is via ‘must-link’ and ‘cannot-link’ [109, 113]. For graph sanitation with

supervised spectral clustering, the training set together with its supervision is absent, and
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the lower-level loss Llower is given in Eq. (3.2). The validation set V contains a ‘must-link’

set M and a ‘cannot-link’ set C. For the upper-level loss, the idea is to encourage nodes

from must-link setM to be grouped in the same cluster and, in the meanwhile, push nodes

from cannot-link set C to be in different clusters. To be specific, Lupper can be instantiated

as follows.

min
A

−u∗′Qu∗, (3.7)

where Q encodes the ‘must-link’ and ‘cannot-link’, that is, Q[i, j] = 1 if (i, j) ∈M, Q[i, j] =

−1 if (i, j) ∈ C, and Q[i, j] = 0 otherwise. This instantiation only modifies the graph

topology A.

Instantiation #3: semi-supervised node classification. For graph sanitation with semi-

supervised node classification, its lower-level optimization problem is given in Eq. (3.3). We

have cross-entropy loss over validation set V as the upper-level problem:

min
G

LCE (G, θ∗,V ,Yvalid) = −
∑
i∈V

c∑
j=1

yij ln ŷij. (3.8)

Notice that T ∩V = ∅. If both the topology A and node feature X are used for classification,

then they both can be modified in this instantiation.

Remarks. If the initially given graph G is poisoned by adversarial attackers [104, 114],

the graph sanitation problem with semi-supervised node classification can also be used as

a defense strategy. However, it bears an important difference from the existing robust

GNNs [100, 101, 102] as it does not assume the given graph G is poisoned or any specific

way by which it is poisoned. Therefore, the graph sanitation problem in this scenario can

boost the performance under a wide range of attacking scenarios (e.g., non-poisoned graphs,

lightly-poisoned graphs, and heavily-poisoned graphs) and has the potential to work hand-

in-hand with existing robust GNNs model. The following section proposes an effective

algorithm for the graph sanitation problem with semi-supervised node classification.

3.1.3 Proposed Algorithms: GaSoliNe

We focus on graph sanitation problem in the context of semi-supervised node classifica-

tion and propose an effective solver named GaSoliNe. The general workflow is as follows.

First, we solve the lower-level problem (Eq. (3.3)) and obtain a solution θ∗. Then we com-

pute the hyper-gradient of the upper-level loss function (Eq. (3.8)) w.r.t. the graph G to

solve the upper-level optimization problem. Recall that a classifier f(θ) is needed to provide
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the predicted labels (in both the lower-level and upper-level problems) and we refer to this

classifier as the backbone classifier. Finally we test the performance of another classifier over

the modified graph on the test set W and this classifier is named as the downstream classi-

fier. We will introduce our proposed solution GaSoliNe in four parts: (A) hyper-gradient

computation, (B) hyper-gradient aggregation, (C) hyper-gradient-guided modification, and

(D) low-rank speedup.

A - Hyper-Gradient Computation. Eq. (3.4) and its corresponding instantiations

Eqs. (3.3)(3.8) fall into the family of bilevel optimization problem where the lower-level

problem is to optimize θ via minimizing the loss over the training set {T ,Ytrain} given

G, and the upper-level problem is to optimize G via minimizing the loss over {V ,Yvalid}.
We compute gradient w.r.t. the upper-level problem and view the lower-level problem as a

dynamic system:

θt+1 = Θt+1(G, θt, T ,Ytrain), θ1 = Θ1(G, T ,Ytrain), (3.9)

where Θ1 is the initialization of θ and Θt+1 (t ̸= 0) is the updating formula which can

be instantiated as an optimizer over the lower-level objective function on the training set

(Eq. (3.3)). For the hyper-gradient of the upper-level problem ∇GL, we assume that the

system converges in T iterations (i.e., θ∗ = θT ). Then we unroll the iterative solution of

the lower-level problem to obtain the hyper-gradient ∇GL by the chain rule as follows [115]

where At = ∇θtθ
t+1, Bt = ∇Gθ

t+1. For brevity, we abbreviate cross-entropy loss over the

validation set LCE(G, θT ,V ,Yvalid) as Lvalid(θT ).

∇GL = ∇GLvalid
(
θT
)
+

T−2∑
t=0

BtAt+1 . . . AT−1∇θTLvalid
(
θT
)

(3.10)

Our final goal is to improve the performance of converged downstream classifiers. Hence,

T is set as a relatively large value (e.g., 200) to ensure the hyper-gradient is computed over a

converged classifier. To balance the effectiveness and the efficiency, we adopt the truncated

hyper-gradient [116] w.r.t. G and rewrite the second part of Eq. (3.10) as∑T−2
t=P BtAt+1 . . . AT−1∇θTLvalid(θT ), where P denotes the truncating iteration. To further

speed up, we adopt a first-order approximation [104, 117] and ∇GL can be computed as:

∇GL =
T∑
t=P

∇GLvalid
(
θt
)
. (3.11)

where the updating trajectory of θt is the same as Eq. (3.9). If the initially-provided graph
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G is undirected, it indicates that A = A′. Hence, when we compute the hyper-gradient

w.r.t. the undirected graph topology A, we need to calibrate the partial derivative into the

derivative [105] and update the hyper-gradient as follows:

∇AL ← ∇AL+ (∇AL)′ − diag (∇AL) . (3.12)

For the hyper-gradient w.r.t. feature X and directed graph topology A (A ̸= A′), the above

calibration process is not needed.

B - Hyper-Gradient Aggregation. To ensure the quality of graph sanitation without

introducing bias from a specific dataset split, we adopt K-fold split with similar settings as

cross-validation [49]. Specifically, during the training phase, we split all the labeled nodes

Z into K folds and alternatively select one of them as V (with labels Yvalid) and the others

as T (with labels Ytrain). In total, there are K sets of training/validation splits. With

the k-th dataset split, by Eq. (3.11), we obtain the hyper-gradient ∇k
GL. For the hyper-

gradient {∇1
GL, . . . ,∇K

GL} from the K sets of training/validation split, we sum them up as

the aggregated hyper-gradient: ∇G =
∑

k∇k
GL.

C - Hyper-Gradient-Guided Modification. To modify the graph based on ∇G, we

provide two variants, discretized modification and continuous modification. The discretized

modification can work with binary inputs such as adjacency matrices of unweighted graphs

and binary feature matrices. The continuous modification is suitable for both continuous

and binary inputs. For clarity of explanation, we replace the G with the adjacency matrix

A as an example of the topology modification. Generalizing that to the feature modification

with feature matrix X is straightforward.

The discretized modification is flipping B entries in A whose indices are also the indices

of the top-B entries in a hyper-gradient-based score matrix S:

S = (−∇A)⊙ (1− 2A) , (3.13)

where ⊙ denotes Hadamard product, 1 is an all-one matrix. This score matrix is composed

of ‘preference’ (i.e., −∇A) and ‘modifiability’ (i.e., (1 − 2A)). Only high ‘preference’ and

‘modifiability’ entries are assigned with high scores. For example, large positive (−∇A)[i, j]

indicates strong preference of adding an edge between the i-th and j-th nodes based on the

hyper-gradient and if the i-th and j-th nodes are not linked (i.e., A[i, j] = 0), (−∇A)[i, j]

and (1− 2A)[i, j] share the same sign which results in a large S[i, j].
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The continuous modification is gradient descent with a budget-adaptive learning rate:

A← A− B

1⊤ |∇A|1
· ∇A. (3.14)

The learning rate is based on the ratio of the modification budget B to the sum of absolute

values of the gradient matrix. In implementation, for both modification methods, we set the

budget in every iteration to b and update the graph in multiple steps until the total budget

B is exhausted. Algorithm 3.1 summarizes our methods. In addition, in our experiments,

the B for topology and feature (Btopo and Bfea) are set separately since the modification

cost on different elements of a graph may not be comparable.

Algorithm 3.1: GaSoliNe

Input : a graph G, the labeled nodes Z, total budget and budget in every step B
and b, number of fold K, truncating and converging iterations T and P ;

Output: the modified graph G̃;
1 initialization: split the labeled nodes Z and their labels into K folds:

Z = {Z1, . . . ,ZK}, Ylabeled = {Y1, . . . ,YK}; G̃← G; cumulative budget δ ← 0;
2 while δ < B do
3 for k=1 to K do
4 V ← Zk, T ← Z\Zk, Yvalid ← Yk, Ytrain ← Ylabeled\Yk, ∇k

G̃
L ← 0;

5 for t = 1 to T do
6 update θt to θt+1 by Eq. (3.9);
7 if t > P then

8 compute ∇k
G̃
Lvalid given {G̃, θt+1,V ,Yvalid};

9 ∇k
G̃
L ← ∇k

G̃
L+∇k

G̃
Lvalid

10 end

11 end

12 end
13 calibrate {∇k

Ã
L} by Eq. (3.12) (if needed);

14 sum {∇k
G̃
L} into ∇G̃, δ ← δ + b;

15 update G̃ based on the guide of score matrix S by Eq. (3.13) (discretized
modification) or by Eq. (3.14) (continuous modification) with budget b

16 end

D - Speedup and Scale-up. The core operation of our proposed GaSoliNe is to com-

pute hyper-gradient w.r.t. the graph components (i.e., A and X) which leads into a gradient

matrix (e.g. ∇AL). In many real-world scenarios (e.g., malfunctions of certain nodes, tar-

geted adversarial attacks), perturbations are often around a small set of nodes, which leads
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to low-rank perturbation matrices. Hence, for topology modification, we propose to decom-

pose the incremental matrix (i.e., ∆A) into its low-rank representation (i.e., ∆A = UV′),

and compute the hyper-gradient with respect to the low-rank matrices instead, which can

significantly speed up and scale up the computation. Recall that the low-rank assumption

is only held for the incremental matrix but for the modified graph (i.e., Ã), it is not limited

to low-rank. Mathematically, the low-rank modification can be represented as:

Ã = A+∆A = A+UV′, (3.15)

where U, V ∈ Rn×r, and r is the rank of ∆A. Hence, by substituting A with A +UV′ in

Eq. (3.8) (i.e., G = {A+UV′,X}) and changing the optimization variable fromA intoU and

V, we can obtain hyper-gradient with respect to U and V (i.e., ∇UL and ∇VL) in the same

manner as Eq.(3.11). By aggregating the hyper-gradients from different training/validation

splits as we introduced in Sec. 3.1.3-B, we obtain aggregated hyper-gradients ∇U and ∇V.

Any gradient descent-based method can then be used to update U and V.

In this way, we can significantly reduce the complexity of time and space, which is sum-

marized in the following lemma. Notice that n,m, d are the number of nodes, the number

of edges, and the feature dimension, respectively, and we have d ≪ n and m ≪ n2. As a

comparison, the time complexity of computing ∇AL is O(n2d) and the space complexity of

computing ∇AL is O(n2). Hence, this low-rank method is much more efficient in both time

and space.

Lemma 3.1. For computing ∇UL and ∇VL, the time complexity is O(nd2 +md) and the

space complexity is O(m+ nd).

Proof. For typical matrix multiplication-based GNNs (e.g., [20]), their propagation formula

can be represented as X ← σ(AXW) (or even simplified by removing the nonlinear acti-

vation function σ and feature transformation matrix W between several layers [22, 23]). If

we do not consider the gradient across the model parameter (i.e., W) updating trajectory

(i.e., first order approximation), and assume that our GNN contains only one layer, the

hyper-gradient concerning the vector U can be computed as follows,

∇UL =

[
∂L

∂σ ((A+UV′)XW)
⊙ σ′ ((A+UV′)XW)

]
W′X′V. (3.16)

The computation of (A+UV′)XW can be rewritten as AXW+UV′XW. Note that A is

a sparse matrix and the space cost is O(m) for computing AXW. The space cost is O(nd)

for UV′XW. For W′X′V the space cost is O(nd). Put everything together the space cost

for computing ∇UL is O(m+ nd).
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The time complexity of the part within [·] in Eq.(3.16) isO(nd2+md). The time complexity

of computing W′X′V is O(ndr). The time complexity about the multiplication between [·]
and W′X′V is O(ndr). Hence, putting everything together, the total time complexity for

computing ∇UL is O(nd2 +md) given r ≪ d. QED.

3.1.4 Experiments

Setups. We evaluate the proposedGaSoliNe on Cora, Citeseer, and Polbolgs datasets [20,

104, 114]. Since the Polblogs dataset does not contain node features, an identity matrix is

used as the node feature matrix. All the datasets are undirected unweighted graphs and we

experiment on the largest connected component of every dataset.

To set fair modification budgets across different datasets, the modification budget on

adjacency matrix Btopo is defined as Btopo = m × modification ratetopo and the budget

on feature matrix Bfea is defined as Bfea = n× d× modification ratefea.

where m, n, and d are the number of edges, nodes, and node features. In all the experiments,

modification ratetopo = 0.1 and modification ratefea = 0.001. Detailed hyperparame-

ter settings are studied in the following content. We report the mean ± std accuracy over

10 repetitions as the evaluation metric.

Applicability of GaSoliNe. The proposed GaSoliNe trains a backbone classifier in the

lower-level problem and uses the trained backbone classifier to modify the initially provided

graph and improve the performance of the downstream classifier on the test nodes. In

addition, GaSoliNe is capable of modifying both the graph topology (i.e., A) and feature

(i.e., X) in both the discretized and continuous fashion. To verify that, we select three

classic GNNs-based node classifiers, including GCN [20], SGC [22], and APPNP [23] as the

backbone classifiers and the downstream classifiers. The detailed experiment procedure is

as follows. First, we modify the given graph using the proposed GaSoliNe algorithm

with 4 modification strategies (i.e., modifying topology or node feature with discretized or

continuous modification). Each variant is implemented with 3 backbone classifiers so that in

total, there are 12 sets of GaSoliNe settings. Second, for every of the 12 modified graphs,

we evaluate 3 downstream classifiers and report the result (mean±std accuracy). For this

subsection, the initially provided graph is Citeseer [20].

Experimental results are reported in Table 3.3 where ‘DT’, ‘CT’, ‘DF’, and ‘CF’ denote

‘discretized topology’, ‘continuous topology’, ‘discretized feature’, and ‘continuous feature’

modifications, respectively. The second row of Table 3.3 shows the results on the initially

provided graph, and the other rows denote the results on modified graphs with different
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Table 3.3: Effectiveness of GaSoliNe under multiple variants (mean±std accuracy). The
first and second columns denote the modification strategies and backbone classifiers adopted
by GaSoliNe, respectively. The remaining columns show the performance of various down-
stream classifiers. • indicates significant improvement compared with results on the original
graph (values at the second row) with a p-value¡0.01 ,and ◦ indicates no statistically signifi-
cant improvement.

Variant Backbone GCN SGC APPNP

None None 72.2±0.5 72.8±0.2 71.8±0.4

DT
GCN 74.7±0.3• 74.8±0.1• 75.4±0.2•
SGC 74.7±0.4• 75.2±0.2• 75.6±0.3•

APPNP 74.6±0.3• 74.6±0.1• 75.4±0.4•

DF
GCN 72.4±0.3◦ 72.7±0.2◦ 72.8±0.4•
SGC 73.3±0.5• 73.4±0.2• 73.6±0.4•

APPNP 72.6±0.3◦ 72.9±0.1◦ 73.6±0.4•

CT
GCN 73.1±0.4• 73.6±0.1• 74.8±0.2•
SGC 73.0±0.3• 73.5±0.2• 74.4±0.3•

APPNP 72.8±0.5◦ 73.4±0.1• 74.4±0.9•

CF
GCN 72.7±0.4◦ 73.6±0.1• 73.8±0.3•
SGC 72.9±0.4• 73.6±0.4• 73.8±0.4•

APPNP 73.0±0.3• 73.6±0.2• 73.9±0.3•

(a) Original (b) After modification

Figure 3.1: Visualization of node embeddings from original Citeseer graph (a) and modified
Citeseer graph by GaSoliNe (b). It is best viewed in color.

settings. We use • to indicate that the improvement of the result is statistically significant

compared with results on the initially provided graph with a p-value< 0.01, and we use

◦ to indicate no statistically significant improvement. We have the following observations.

First, in the vast majority cases, the proposed GaSoliNe is able to statistically significantly

improve the accuracy of the downstream classifier over the initially-provide graph, for every

combination of the modification strategy (discretized vs. continuous) and the modification

target (topology vs. feature). Second, the graphs modified by GaSoliNe with different

backbone classifier can benefit different downstream classifiers, which demonstrates great

transferability and broad applicability.
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(a) metattack

(b) Nettack

(c) random attack

Figure 3.2: Performance comparison between baselines andGaSoliNe under (a) metattack,
(b) Nettack, and (c) random attack with various perturbation rates. It is best viewed in
color.

We further provide visualization of node embeddings before and after modification. We

present the visualizations of the initial Citeseer graph and the modified Citeseer graph

from GaSoliNe DT variant with SGC [22] backbone classifier. The detailed procedure

is that a GCN [20] is trained on the training set T of given initial/modified graphs, and

hidden representations are used as node embeddings. Then, t-SNE [118] maps the node

embeddings into two-dimensional ones for visualization. Figure 3.1 shows the visualization

results from the original and the modified Citeseer graphs. Clearly, the node embeddings

from the modified graph are more discriminative than the embeddings from the original

graph. Specifically, the clusters are more cohesive and there is less overlap between clusters

in the modified graphs (i.e., Figures 3.1b) compared with those on the original graph (i.e.,

Figure 3.1a). It further demonstrates that even though we do not know the downstream

classifiers (in this case, the backbone classifier and downstream classifier are different), the

proposed GaSoliNe can still improve the graph quality to benefit downstream classifiers.
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Table 3.4: Comparison with baselines on heavily poisoned datasets (mean±std accuracy).
Some results are not applicable since Jaccard requires node features that are absent on the
Polblogs graph. G denotes GaSoliNe for short.

Attack Data APPNP GAT Jaccard SVD RGCN DE LDS G-DT G-CF G-DTCF

metattack
Cora 47.0±0.7 48.8±0.2 65.4±0.9 60.3±0.8 50.6±0.8 48.7±0.9 58.7±1.3 67.3±0.7 57.0±0.9 68.8±0.9

Citeseer 49.4±2.2 62.4±0.7 57.1±1.0 49.5±0.8 55.5±1.4 50.1±2.3 58.2±2.3 63.5±1.5 58.4±1.5 62.2±1.0
Polblogs 58.4±3.6 48.2±6.6 N/A 79.1±2.4 50.8±0.9 56.4±6.3 63.7±5.7 65.0±0.7 55.0±4.1 64.7±1.4

Nettack
Cora 60.7±1.2 54.2±2.3 63.7±1.4 52.9±2.8 56.5±1.1 60.8±1.0 64.5±2.4 64.5±2.2 63.9±2.4 66.1±1.9

Citeseer 68.3±6.8 61.9±4.4 72.5±3.3 50.2±6.6 56.4±1.5 63.3±4.7 71.0±3.3 71.6±3.9 69.4±4.8 74.3±1.6
Polblogs 90.5±1.0 91.1±0.7 N/A 93.6±1.2 93.1±0.2 89.1±2.4 91.1±1.8 92.3±1.6 90.3±0.7 92.4±1.7

random
attack

Cora 74.3±0.4 58.1±1.0 75.1±0.5 72.6±0.3 68.9±0.4 73.9±0.6 76.6±0.4 77.1±0.3 78.3±0.5 77.8±0.2
Citeseer 69.8±0.6 60.8±1.6 69.7±0.5 66.7±0.4 65.7±0.2 69.4±0.5 72.3±0.4 73.8±0.2 72.3±0.4 73.4±0.5
Polblogs 74.7±2.8 84.5±1.0 N/A 83.3±2.8 81.7±0.9 75.9±1.4 73.2±2.8 73.4±4.1 77.1±1.6 77.6±2.9

Effectiveness of GaSoliNe. The defects of the initially-provided graph can be due to

various reasons, such as construction bias or even malicious poisoning. In this subsection, we

evaluate the effectiveness of the proposed GaSoliNe by (A) comparing baseline methods

on various poisoned/noisy graphs and (B) integrating with existing robust GNNs methods.

The attack methods we adopt are as follows: (1) Random Attack randomly flips entries of

benign adjacency matrices with different perturbation rate; (2) Nettack [114] attacks

a set of target nodes with different perturbations/node; (3) metattack [104] poisons the

performance of node classifiers by perturbing the overall benign graph topology with different

perturbation rate.

A - Comparison with Baseline Methods. We compare GaSoliNe with the following

baseline methods: APPNP [23], GAT [21], Jaccard [101], SVD [100], RGCN [103], DE [119],

and LDS [54]. Recall that we feed all the graph modification-based methods (Jaccard, SVD,

DE, LDS, GaSoliNe) with the exactly same downstream classifier (APPNP) for a fair

comparison.

We set 3 variants of GaSoliNe to compare with the above baselines. To be specific,

we refer to (1) GaSoliNe with discretized modification on topology as GaSoliNe-DT, (2)

GaSoliNe with continuous modification on feature as GaSoliNe-CF, and (3) GaSoliNe

with discretized modification on topology and continuous modification on feature as GaSo-

liNe-DTCF. All these GaSoliNe variants use APPNP [23] as both the backbone classifier

and the downstream classifier. We test various perturbation rates (i.e., perturbation rate

of metattack from 5% to 25% with a step of 5%, perturbation rate of random attack

from 20% to 100% with a step of 20%, and perturbations/node of Nettack from 1 to

5) to attack the Cora [20] dataset and report the accuracy (mean±std) in Figure 3.2. From

experiment results we observe that: (1) with the increase of adversarial perturbation, the

performance of all methods drops, which is consistent with our intuition; (2) variants of

20



GaSoliNe consistently outperform the baselines under various adversarial/noisy scenar-

ios; and (3) the proposed GaSoliNe even improves over the original, benign graphs (i.e., 0

perturbation rate and 0 perturbations/node).

An interesting question is, if the initially-provided graph is heavily poisoned/noisy, to

what extent is the proposed GaSoliNe still effective? To answer this question, we study

the performance of GaSoliNe and other baseline methods on heavily-poisoned graphs

(100% perturbation rate of random attack, 25% perturbation rate of metattack, and

5 perturbations/node of Nettack). The detailed experiment results are presented in

Table 3.4. In most cases, GaSoliNe can obtain competitive or even better performance

against baseline methods. On the Polblogs graph, GaSoliNe does not perform as well as in

the other two datasets. This is because, (1) the Polblogs graph does not have node feature

which weakens the effectiveness of modification from GaSoliNe and (2) the Polblogs graph

has strong low-rank structure, which can be further verified in the following experiments.

As flexible solutions, in the following subsection, we study whether GaSoliNe can work

together with other graph defense methods.

B - Incorporating with Graph Defense Strategies. GaSoliNe does not make any

assumption about the properties of the defects of the initially-provided graph. We further

evaluate if GaSoliNe can boost the performance of both model-based and data-based de-

fense strategies under the heavily-poisoned settings. We use a data-based baseline SVD [100],

a model-based baseline RGCN [103], and another strong baseline GAT [21] to integrate with

GaSoliNe since they have shown competitive performance from Table 3.4 and Figure 3.2.

The detailed procedure for model-based methods (GAT and RGCN) is as follows: GaSo-

liNe first modifies the graph, and then the baselines are implemented on the modified graph

to report the final results. For the data-based method (SVD), the baseline is implemented

to preprocess graphs first, and then we modify graphs again by GaSoliNe, and finally run

the downstream classifiers (APPNP) on the twice-modified graphs. In this task, GaSo-

liNe-DTCF is adopted. In order to heavily poison the graphs, we use metattack [104] with

perturbation rate as 25% to attack the benign graphs. We report the results in Table 3.5

and observe that after integrating with GaSoliNe, performance of all the defense methods

further improves significantly with a p-value¡0.01.

Efficacy of Low-Rank GaSoliNe. To answer RQ3, we first compare the performance

of APPNP [23] on two modified graphs from the low-rank GaSoliNe (denoted as GaSo-

liNe-LR) and the original GaSoliNe, respectively. Specifically, we adopt its variant for

the original GaSoliNe with continuous modification towards the network topology. Due

to the space limitation, we only show the results given graphs perturbed by metattack [104]
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Table 3.5: Node classification accuracy (mean±std) boosting of existing defense methods on
poisoned graphs (25% edges perturbed by metattack [104]) by the proposed GaSoliNe.

Data With GaSoliNe? GAT SVD RGCN

Cora
N 48.8±0.2 60.3±0.8 50.6±0.8
Y 63.7±0.6 79.7±0.6 62.6±0.6

Citeseer
N 62.4±0.7 49.5±0.8 55.5±1.4
Y 69.7±0.2 76.5±0.6 66.1±0.8

Polblogs
N 48.2±6.6 79.1±2.4 50.8±0.9
Y 70.8±0.6 89.2±0.7 67.7±0.3

in Table 3.6. We observe that in most settings on both the Cora and Citeseer datasets, the

GaSoliNe-LR can obtain promising performance against the original GaSoliNe. Surpris-

ingly, on the Polblogs dataset, the GaSoliNe-LR shows great advantages over the original

GaSoliNe. One possible explanation is that the Polblogs dataset is inherently low-rank

(which can be corroborated by Table 3.4 where SVD [100] obtains strong performance) and

GaSoliNe-LR learns a low-rank incremental matrix which amplifies the advantage further.

To verify the efficiency of the proposed GaSoliNe-LR, we generate a set of synthetic

graphs with different numbers of nodes n. The wall-clock time for computing the hyper-

gradient is presented in Figure 3.3. Clearly, the GaSoliNe-LR is much more efficient than

the original GaSoliNe especially when the network size is large.

Figure 3.3: Efficiency comparison between GaSoliNe and GaSoliNe-LR

Case Study about the Behavior of GaSoliNe. Here, we further study the potential

reasons behind the success of GaSoliNe. To this end, we conduct a case study whose

core idea is to label malicious modifications (from adversaries) and test if GaSoliNe can

detect them. The specific procedure is that we utilize different kinds of attackers (i.e.,

metattack [104], Nettack [114], and random attack) to modify the graph structure of a

benign graph G (with adjacency matrix A) into a poisoned graph Gadv (with adjacency
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Table 3.6: Effectiveness comparison between GaSoliNe and GaSoliNe-LR

Data Ptb Rate (%) APPNP GaSoliNe GaSoliNe-LR

Cora

0 84.0±0.4 85.2±0.2 84.4±0.3
5 74.1±0.7 77.4±0.5 75.0±0.3
10 65.2±0.4 70.8±0.5 67.9±0.9
15 58.2±1.1 67.1±0.8 65.3±0.8
20 51.7±0.7 62.5±0.5 60.2±1.2
25 47.0±0.7 57.3±0.6 57.1±0.5

Citeseer

0 71.8±0.4 74.7±0.2 73.4±0.2
5 67.6±0.9 69.6±0.7 68.2±0.8
10 61.8±0.8 66.3±1.0 63.9±0.4
15 54.1±0.8 59.3±1.1 56.8±1.1
20 51.0±1.2 56.5±0.9 55.3±0.9
25 49.4±2.2 57.7±1.8 56.5±0.8

Polblogs

0 94.1±0.6 95.3±0.6 95.7±0.3
5 70.1±0.6 73.8±0.9 93.4±0.3
10 69.8±0.8 72.8±0.4 90.8±0.2
15 67.5±0.5 70.1±1.2 88.7±0.3
20 64.1±0.9 68.5±1.0 88.0±0.3
25 57.0±3.6 64.8±2.1 89.9±0.5

matrix Aadv). Then, we utilize the score matrix S from Eq. (3.13) to assign a score to

every entry of the poisoned adjacency matrix Aadv. As we mentioned in Section 3.1.3, the

higher score an entry obtains, the more likely GaSoliNe will modify it. We compute the

average score of three groups of entries from Aadv: the poisoned entries after adding/delet-

ing perturbations from adversaries, the benign existing edges without perturbation, and

the benign non-existing edges without perturbation. Note that both the benign graphs

and the poisoned graphs are unweighted, and we define the following auxiliary matrices.

Adiff = |Aadv −A| is a difference matrix whose entries with value 1 indicate poisoned en-

tries. Abenign-E = A ⊙ (1 − Adiff) is a benign edge indicator matrix whose entries with

value 1 indicate the benign existing edges without perturbation. ⊙ indicates element-wise

multiplication. Abenign-NE = (1−A)⊙(1−Adiff) is a benign non-existing edge indicator ma-

trix whose entries with value 1 indicate the benign non-existing edges without perturbation.
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Based on that, we have the following three statistics:

Sadv =

∑
i,j (S⊙Adiff) [i, j]∑

i,j Adiff[i, j]
, (3.17)

Sbenign-E =

∑
i,j (S⊙Abenign-E) [i, j]∑

i,j Abenign-E[i, j]
, (3.18)

Sbenign-NE =

∑
i,j (S⊙Abenign-NE) [i, j]∑

i,j Abenign-NE[i, j]
, (3.19)

which denotes the average score obtained by poisoned entries, benign existing edges, and

benign non-existing edges.

Detailed results are presented in Figure 3.4. We observe that GaSoliNe tends to modify

poisoned entries more (with higher scores) than to modify benign unperturbed entries in

the adjacency matrix of poisoned graphs, which is consistent with our expectation and

enables the algorithm to recover the benign graphs partially and to boost the performance

of downstream classifiers.

(a) metattack

(b) Nettack

(c) random attack

Figure 3.4: Score of various entries under metattack (a), Nettack (b), and random attack
(c). Best viewed in color.
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Effect of Modification Budget. In this section, we study the relationships between the

budget of GaSoliNe and the corresponding performance of the downstream classifier.

Here, we instantiate two variants of GaSoliNe: discretized modification towards topology

(GaSoliNe-DT) and continuous modification towards feature (GaSoliNe-CF). The pro-

vided graph is Cora [20] which is heavily-poisoned by metattack [104] with perturbation rate =

25% (i.e., B). The perturbation budget per modification step b is set to be B
10
. Both the

backbone classifier and the downstream classifier of GaSoliNe are the APPNP [23] models

with the settings above. From Figure 3.5 we observe that with the increase of the budget

(modification ratetopo and modification ratefea), GaSoliNe enjoys great potential to

improve the performance of the downstream classifiers further. At the same time, ‘economic’

choices are strong enough to benefit downstream classifiers, so we set modification ratetopo

as 0.1 and modification ratefea as 0.001 throughout our experiment settings.

(a) GaSoliNe-DT (b) GaSoliNe-CF

Figure 3.5: Performance of downstream classifier vs. the modification budget of GaSoliNe-
DT (a) and GaSoliNe-CF (b)

(a) update steps (b) number of folds K

Figure 3.6: Performance of GaSoliNe-DTCF vs. the update steps (a) and the number of
folds K (b).

Effects of Modification Steps and Number of Folds. As stated in the main con-

tent, during implementation, we set the budget to b in every iteration and update the given
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graph multiple times until the total budget B is exhausted. Hence, the update steps are

equal to ⌈B
b
⌉. Intuitively, a smaller budget per iteration can provide a finer update towards

the given graphs. To validate that we test the performance of an instantiation of GaSo-

liNe with discretized modification towards topology and continuous modification towards

feature (GaSoliNe-DTCF) on the Cora [20] graph which is poisoned by metattack [104]

with perturbation rate = 25%. Both the backbone classifier and the downstream clas-

sifier of GaSoliNe are the APPNP [23] with the settings above. From Figure 3.6a, we

observe that with more update steps, downstream classifiers can get better performance.

However, when the number of steps exceeds 20, the performance improvement is minor.

Additionally, the number of training/validation split folds, K, is another important hyper-

parameter in our model. Intuitively, a larger K leads to better usage of the given data. To

study the relationships between K and the corresponding performance of the downstream

classifier, we implement GaSoliNe-DTCF on the original Cora graph to verify that. Note

that the modification ratetopo = 0.1, modification ratefea = 0.001, and the number of

modification steps is set as 10. From Figure 3.6b we observe that the performance of the

downstream classifier is improved with the increase of the number of folds. However, such

performance gains stop when K = 6. Hence, K = 6 is enough to make full use of the given

graph by GaSoliNe.

3.2 GENERALIZED FEW-SHOT NODE CLASSIFICATION

3.2.1 Introduction

The task of node classification aims to classify nodes into categories, which has been

extensively studied [20, 21, 23, 31, 120, 121, 122, 123]. Typically, sufficient labeled nodes

from all the classes are the cornerstone of this task. However, due to the ever-growing new

data and high annotation cost by human labor, the number of labeled nodes from various

classes tends to follow a long-tailed distribution [124]. Consequentially, some classes might

not have sufficient labeled nodes, which in turn degrades the performance of node classifiers

dramatically. This problem with limited labeled nodes per class (i.e., shots) is known as

few-shot node classification [124, 125, 126, 127, 128].

Formally, few-shot node classification separates the classes of interest into the base and

novel classes, where the former are provided with many shots and the latter are provided with

only few shots (usually less than 10). At the test phase, the classifier aims to accurately

classify test nodes only into the novel classes. Directly training advanced node classifiers

(e.g., graph neural networks (GNNs)) on few labeled nodes from novel classes is prone to
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node classification
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Figure 3.7: An illustrative example to show the difference between the few-shot and gener-
alized few-shot node classification tasks. For the generalized one, the test node is expected
to be classified into the joint set of the novel and base classes.

overfitting. Recently, increasing research efforts have been made to address the few-shot node

classification problem. Representative works include MetaGNN [125], graph prototypical

networks (GPN) [124], G-META [127], and so on. Most of the existing solutions are under

the umbrella of meta-learning [129], specifically, the strategy named episodic training [124,

125, 130, 131, 132]. Concretely, they first construct episodes from the base classes, every

of which includes the training and evaluation of a (base-) learner (e.g., a node classifier).

Then, a meta-learner is optimized by supervising the training and evaluation process of

the (base-) learner, and ‘learns to X’ (e.g., learns to train a node classifier) through the

iterative episodes. With such high-level knowledge extracted by the episodic training, the

meta-learner can effectively assist the node classifier to handle the node classification tasks

on few-shot novel classes.

Despite the great progress, most, if not all, of them follow a strong assumption that all the

test nodes must be exclusively sampled from the novel classes, which is hardly realistic in real-

world applications. A motivating example is a bibliography literature classification system,

whose nodes represent published literature and links represent reference relationships. More

often than not, a newly-published paper could fall into a classic domain (i.e., a base class)

instead of a new domain (i.e., a novel class). To bridge the gap between the setting of the few-

shot node classification problem and real-world scenarios, this paper studies a broader and

more practical problem, namely generalized few-shot node classification. Given base classes

with many shots and novel classes with few shots, in this new problem, a node classifier

is expected to perform classification on the joint label set of both base and novel classes,

instead of the label set of the novel classes alone. An illustration is provided in Fig. 3.7.
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This subtle difference in the target label set leads to a significantly more challenging problem

from two key perspectives.

Challenges. First (asymmetric classification), at the meta-test phase for meta-learning-

based methods (or the test phase for standard learning methods), a classifier tends to show

more confidence towards the base classes compared with the novel classes [133] due to the

imbalanced shots [134, 135]. In Table 3.7, we illustrate that by presenting classification

results on Amazon-Clothing [136] and Cora-Full [137] datasets from a classic node classifier

(APPNP [23]) and a few-shot node classifier (MetaGNN [125]). We observe that the majority

of nodes from the novel classes are classified into the base classes, which will definitely lead

to misclassification. Similar results have been reported in the generalized zero-shot learning

problem [138, 139, 140] from the computer vision domain.

Second (inconsistent preference), appropriately aggregating information from multiple re-

ceptive fields is the key operation for the effectiveness of graph neural networks [23, 121, 141].

However, the optimal weight assignments among receptive fields could vary dramatically be-

tween the many-shot cases (i.e., from a base class) and the few-shot cases (i.e., from a novel

class). For instance, on a sparsely-connected homophilic graph (where edges often connect

same-class nodes), under the many-shot settings, classifiers prefer to pay more attention

to the local information [23, 121] from small receptive fields; on the contrary, under the

few-shot settings, more attention to the long-range propagation is necessary as the labeled

nodes will locate sparsely in the given graph [23, 70, 126, 142]. There is tension between

the above two scenarios about the weight assignments of receptive fields. Nonetheless, it

remains unknown how to design an adaptive model that can kill two birds with one stone,

addressing both base and novel classes. It is worth noting that the inconsistent preference

challenge only applies to the generalized few-shot node classification problem. In contrast,

for the standard few-shot node classification problem, a classifier will not face the incon-

sistent preference challenge, and a consistent weight assignment is often sufficient. This is

because, at the meta-test time, classifiers only need to predict novel classes whose numbers

of shots are more or less balanced.

3.2.2 Preliminaries

This section introduces the notations, the formal definition of the problem we aim to

study, and preliminary works on few-shot learning based on meta-learning.

Notations. We use bold uppercase letters for matrices (e.g., A), bold lowercase letters for

vectors (e.g., u), lowercase and uppercase letters in the regular font for scalars (e.g., d, K),
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Table 3.7: Test nodes (%) classified from base classes to base classes (i.e., b→ b), from base
classes to novel classes (i.e., b → n), from novel classes to base classes (i.e., n → b), and
from novel classes to novel classes (i.e., n→ n), respectively.

Dataset Method b→ b b→ n n→ b n→ n

Amazon
Clothing

APPNP 100.0 0.0 69.6 30.4
MetaGNN 100.0 0.0 61.2 38.8

Cora-Full
APPNP 99.2 0.8 66.8 33.2
MetaGNN 99.0 1.0 72.4 27.6

and calligraphic letters for sets (e.g., T ). A[i, j] denotes the entry of matrix A at the i-th

row and the j-th column, A[i, :] denotes the i-th row of matrixA, andA[:, j] denotes the j-th

column of matrix A. Similarly, u[i] denotes the i-th entry of vector u. Superscript ⊤ denotes

the transpose of matrices and vectors (e.g., A⊤ is the transpose of A). An attributed graph

can be represented as G = {A,X} which is composed by an adjacency matrix A ∈ Rn×n

and an attribute matrix X ∈ Rn×d, where n is the number of nodes and d is the node feature

dimension. In total, nodes can be categorized into a set of classes C. The node set V and

the class set C will be split and notated with appropriate subscripts. For example, Vtest and
Cnovel refer to the test nodes and the novel classes, respectively. N denotes the number of

novel classes and K denotes the number of training nodes per novel class. Note that the

number of base classes and the number of training nodes per base class are much larger than

N and K, and they are not fixed across different datasets.

Problem Definition. As mentioned in Section 3.2.1, we do not exclude the base classes

from the class membership of test nodes and study the generalized few-shot node classification

problem which is defined as follows.

Problem 3.2. Generalized few-shot node classification

Given: (1) a graph G = {A,X}, (2) labeled nodes Vbase from base classes Cbase, (3) labeled
nodes Vnovel from novel classes Cnovel (Cbase ∩ Cnovel = ∅) where each novel class has very

few (e.g., 1) labeled nodes, (4) unlabelled test nodes Vtest from classes Cnovel ∪ Cbase, where
Vbase ∩ Vtest = ∅ and Vnovel ∩ Vtest = ∅.
Find: The predicted labels for the unlabelled test nodes Vtest.

We remark that the topology and attribute information of all the nodes are given and we

study this problem under the semi-supervised (and transductive) setting.

Based on the naming convention from the few-shot learning community, we name it as the

generalized N-way K-shot node classification problem. Note that this naming convention

29



only describes the setting of novel classes. The number of base classes is at least 3N , and

each of the base classes is provided with at least 10K shots.

Episodic Training for Meta-Learning. Meta-learning-based few-shot learning solutions

inspire our proposed method. Here, we introduce the classic episodic training [124, 125, 130,

131, 132, 143].

Meta-learning is also known as learning-to-learn which describes the interaction between

a meta-learner (parameterized by ϕ) and a (base-) learner (e.g., a classifier parameterized

by θ). According to the conventional N -way K-shot problem setting [124, 125, 132], at the

meta-test phase, all the nodes exclusively come from the novel classes Cnovel and |Cnovel| = N .

The classifier θ will fit on the provided N ×K labeled nodes (i.e., K labeled nodes per novel

class) with the assistance of the meta-learner ϕ. The meta-test performance is measured by

the fitted classier on the test nodes.

To align the meta-training and meta-test scenarios, episodic training [124, 125, 130, 131,

132] mimics the meta-test scenario and generates episodes {Ei = {Si,Qi}} from base classes.

In every episode, N base classes are randomly selected. Then, for the selected base classes,

K and I labeled nodes per base class are sampled to compose the support set Si and the

query set Qi respectively. Here the configuration of the support set is to align with the N -

way K-shot meta-test scenarios, and I is fixed (e.g., 30) as many existing works [124, 131]

did. As the support set Si and query set Qi are both labeled but do not overlap with each

other, we use v and v′ with indices to distinguish nodes from the support set Si with those

from the query set Qi. The i-th episode can be represented as Eq. (3.20) and the training

objective can be formulated as Eq. (3.21).

Si = {v1, . . . , vN×K} , Qi =
{
v′1, . . . , v

′
N×I

}
. (3.20)

ϕ∗ =argmin
ϕ

Evi∈Q Lcla (z (G, θ∗, ϕ, vi) , yi) ,

s.t. θ∗ = argmin
θ

Evj∈S Lcla (z (G, θ, ϕ, vj) , yj) ,
(3.21)

where z(G, θ, ϕ, vi) is the classification results on node vi by the classifier θ (with the assis-

tance from the meta-learner ϕ), yi is the label of vi, and Lcla() is the classification loss. The

classifier θ is trained from scratch with the meta-learner ϕ on the support set Si (i.e., the
lower-level objective) and its loss on the query set Qi serves as the supervision to update

the meta-learner ϕ (i.e., the upper-level objective).
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3.2.3 Proposed Method
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Figure 3.8: The framework of Stager. The propagation step p = 2 in this figure.

In this section, we first introduce the overall motivation of our model design. Then,

we present the concrete instantiation of every model component. After that, a tailored,

imbalanced episodic training approach is proposed for our model.

Design Motivation. From the statistical learning perspective, the goal of the generalized

few-shot node classification is to infer the probability P (yi|G, vi), where yi is the label of the
node vi:

P (yi|G, vi) =
∑

C̃i∈{novel,base}

P
(
yi|C̃i,G, vi

)
P
(
C̃i|G, vi

)
, (3.22)

where C̃i is a variable to indicate whether the given node vi belongs to novel classes or

base classes. When C̃i = base, inferring P
(
yi|C̃i,G, vi

)
is equivalent to the standard node

classification problem [20, 21, 23, 120, 121, 122, 123] with many shots. On the contrary,

if C̃i = novel, inferring P
(
yi|C̃i,G, vi

)
is equivalent to the few-shot node classification

problem [124, 125, 132]. In a nutshell, there exist rich approaches to estimate P
(
yi|C̃i,G, vi

)
in both cases.

However, resolving the problem in one model as Eq. (3.22) is a great challenge. The

empirical evidence in Table 3.7 illustrates that the effect of asymmetric classification de-

teriorates the classification performance significantly. In other words, when applied to the

generalized few-shot node classification problem, existing classic and few-shot node classi-

fiers tend to over-estimate P
(
C̃i = base|G, vi

)
yet under-estimate P

(
C̃i = novel|G, vi

)
, i.e.,

P
(
C̃i = base|G, vi

)
≫ P

(
C̃i = novel|G, vi

)
even if vi is from the novel classes. An intuitive
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explanation is that, for existing methods, most of them directly estimate P (yi|G, vi) by one

parametric model whose training is overwhelmed by the labeled nodes from the base classes.

Thus, the implicit component P
(
C̃i|G, vi

)
of the estimated probability P (yi|G, vi) is heavily

biased. Based on the above analysis, our overall solution for the asymmetric classification

is estimating P
(
yi|C̃i,G, vi

)
and P

(
C̃i|G, vi

)
separately.

Unfortunately, exactly inferring of P
(
yi|C̃i,G, vi

)
or P

(
C̃i|G, vi

)
is not feasible. This is

because, on graph data, the labels of a node vi (both C̃i and yi) are determined by its at-

tributed ego net, and exactly inferring them requires enumerating all the possible attributed

ego nets. Therefore, we approximate the above two distributions by tractable models, in-

cluding a classifier f(θ) and a weight assigner g(ϕ). In the following subsections, we will

introduce the instantiations of f(θ) and g(ϕ); after that, a novel generalized episodic train-

ing paradigm is presented, which is tailored for the generalized few-shot node classification

problem and can work hand-in-hand with our models.

Models. The overall framework of our proposed model Stager is presented in Fig. 3.8.

It is composed of a classifier f(θ) and a weight assigner g(ϕ) introduced below.

A - Classifier f(θ). The classifier is instantiated as follows which is based on the predict-

then-propagate design [23],

H(0) = MLP (X, θ) , (3.23a)

H(j+1) = ÃH(j), (3.23b)

Z = softmax

(
p∑
j=0

(
W[:, j]1⊤)⊙H(j)

)
. (3.23c)

We first obtain the prediction H(0) ∈ Rn×C based on the node attributes X from a multi-

layer perceptron (MLP) parameterized by θ (i.e., Eq. (3.23a)), where n is the number of

nodes and C is the total number of node classes (including both Cbase and Cnovel). Then,

the prediction matrix H(0) is propagated p steps to obtain a group of prediction matrices

{H(0), . . . ,H(p)} by power iterations with Ã (i.e., Eq. (3.23b)). Here Ã ∈ Rn×n is the

symmetrically normalized adjacency matrix with self-loops. Notice that these prediction

matrices also denote the predictions based on different receptive fields. Finally, all these

prediction matrices are aggregated by a weight assignment matrix W ∈ Rn×(p+1) whose

entry W[i, j] represents the importance of the j-th propagated prediction matrix (i.e., H(j))

for the i-th node (i.e., Z[i, :]). By broadcasting the weight vector for the j-th propagation

(i.e., W[:, j]) with an all-one vector 1 ∈ RC×1, we assign the weight to the j-th propagated
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prediction matrix through the Hadamard product ⊙. The softmax is row-wise.

Existing models APPNP [23] and GPRGNN [121] set every column of weight matrix W as

a constant vector, which might suffer from the inconsistent preference problem as the optimal

weight assignments among receptive fields could vary dramatically between the many-shot

cases and the few-shot cases (see the detailed analysis in Section 3.2.1). One possible solution

is to set W as a free learnable parameter of the classifier, which is prone to overfitting as the

number of parameters is linear with respect to the number of nodes. More importantly, as we

have analyzed before, explicitly estimating P
(
C̃i|G, vi

)
is necessary. Hence, we propose to

encode P
(
C̃i|G, vi

)
into W as the output of a well-designed weight assigner as introduced

below.

B - Weight Assigner g(ϕ). Based on the design motivation laid out above, on estimating

P
(
C̃i|G, vi

)
and working closely with the classifier f(θ), our design of the weight assigner

g(ϕ) bears the following rationales. First, essentially, for the generalized few-shot node

classification problem, P
(
C̃i|G, vi

)
reflects the number of shots; e.g., P

(
C̃i = base|G, vi

)
indicates the probability of the class of vi being provided with many shots. Second, a

sub-module should explicitly extract the shot-aware representation from the input {G, vi}.
Finally, if the input of a module is shot-aware, its output should also be shot-aware. Concrete

instantiation of g is as follows whose two sub-modules are parameterized by ϕ = {ϕ1, ϕ2},

Z̃ = rank (softmax (g1 (A,X, ϕ1))) , (3.24a)

W = MLP
(
Z̃, ϕ2

)
. (3.24b)

The first sub-module (Eq. (3.24a), motivated by the first and second rationales) is a prelim-

inary node classifier g1 (parameterized by ϕ1, followed with softmax) whose ranked output

Z̃ ∈ Rn×C is the shot-aware representation. The second sub-module is an MLP (Eq. (3.24b),

parameterized by ϕ2, following the last rationale), whose output is the shot-aware weight

assignment matrix. The rank is row-wise.

Our key idea is to utilize the epistemic uncertainty.1 Since the epistemic uncertainty

can reflect the size of training data, i.e., shots for our problem, our first sub-module of

the weight assigner (Eq. (3.24a)) conducts a preliminary prediction (i.e., softmax(g1(·)),
and then measures the epistemic uncertainty (i.e., MLP(rank(·)), where MLP is merged into

another MLP from Eq. (3.24b) for brevity) to output the shot-aware representation Z̃. We

further elaborate on a few more points. First, for better extracting the epistemic uncertainty,

we adopt a practical approach named dropout variational inference [144, 146] and rewrite

1Epistemic uncertainty is defined to measure how well the model fits the data and is reducible as the size
of training data increases [144, 145].
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the input of rank(·) from softmax
(
g1(A,X, ϕ1)

)
to 1

T

∑T
t=1 softmax (g1 (A,X, ϕ

t
1)) where

ϕt1 is the masked parameter of ϕ1 through dropout layers [147]. Second, the design of the

rank function is based on the intuition that the uncertainty is closely related to the ordered

prediction vector. For example, commonly-used uncertainty metrics of a prediction vector u,

max(u) (the largest probability) and gap(u) (the largest probability minus the second largest

one) can be represented by [1, 0, . . . , 0] · rank(u) and [1,−1, . . . , 0] · rank(u), respectively.
Finally, the proposed uncertainty measure: MLP(rank(·)) is flexible, thanks to the universal

approximator MLP [148]. We will provide an interesting discussion about the selection of g1

in Section 3.2.4.

Imbalanced Episodic Training. As mentioned, we decompose the classification goal

into two probability distributions (P
(
yi|C̃i,G, vi

)
and P

(
C̃i|G, vi

)
) and estimate them by

the classifier f(θ) and weight assigner g(ϕ) respectively. The key idea is designing g(ϕ) to

output a shot-aware weight assignment matrix for the f(θ). This is because, fundamentally,

for the generalized few-shot node classification problem, P
(
C̃i|G, vi

)
reflects shots and vice

versa. Here, we further ask: how can we train g(ϕ) to estimate P
(
C̃i|G, vi

)
in an even

broader scope, beyond the scenario of base classes Cbase vs. novel classes Cnovel? In other

words, whether there exist other base classes vs. novel classes scenarios from which the g(ϕ)

can learn?

To answer this question, let us take a close look at a prevalent training paradigm for

meta-learning problems named episodic training [124, 125, 130, 131, 132]. The core idea

of episodic training is to leverage the abundant labeled base samples to generate sufficient

few-shot episodes (all classes are few-shot). The few-shot episodes facilitate the learning of a

meta-learner which can in turn assist the learning of learners on few-shot scenarios. However,

directly grafting such a strategy on the training of g(ϕ) is pointless. That is because, the

goal of the weight assigner (g(ϕ)) for the generalized few-shot node classification problem

is not learning to learn a few-shot classifier (the core idea of meta-learning based few-shot

learning), but learning to tell if a node is from novel classes or base classes. Based on this

key insight, we generalize the episodic training and propose a novel training strategy named

imbalanced episodic training.

A - Imbalanced Episodes. For the generalized few-shot node classification task, as

we have mentioned before, the ideal training scenarios of the weight assigner g(ϕ) are com-

posed of base classes vs. novel classes. Hence, we propose imbalanced episodic training to

mimic such scenarios. Particularly, our first step is to sample pseudo-base and pseudo-novel

classes (Cpseudo-novel and Cpseudo-base) from the base classes such that |Cpseudo-novel| = N and
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|Cpseudo-base| = M . Then, the labelled nodes (from Cbase) which belongs to Cpseudo-novel and

Cpseudo-base are notated as Vpseudo-novel and Vpseudo-base. After that, episodes {Ei = {Si,Qi}}
are sampled from Vpseudo-novel and Vpseudo-base where the i-th episode can be represented as

follows.

Si = {v1, . . . , vN×K︸ ︷︷ ︸
from Vpseudo-novel

, vN×K+1, . . . , vN×K+M×L︸ ︷︷ ︸
from Vpseudo-base

}

Qi = {v′1, . . . , v′N×I︸ ︷︷ ︸
from Vpseudo-novel

, v′N×I+1, . . . , v
′
(N+M)×I︸ ︷︷ ︸

from Vpseudo-base

}
(3.25)

where K nodes are sampled from Vpseudo-novel per class and L nodes are sampled from

Vpseudo-base per class to form every support set S; from both Vpseudo-base and Vpseudo-novel, I
nodes are sampled per class to form every query set Q. About the selection of N , M , K, L,

I, we follow three rules of thumb: (1) N ≪M because it is common that |Cnovel| ≪ |Cbase|,
(2) K ≪ L because Cpseudo-base serves as the many-shot classes and Cpseudo-novel serves as the
few-shot classes, and (3) I is fixed (e.g., 30) as many existing works [124, 131] did. Specific

selections of the above values can be found in Section 3.2.4.

B - Training Procedure for Stager. We rewrite the final prediction of the proposed

Stager from Eq. (3.23c) as z(G, θ, ϕ1, ϕ2, vi) to represent the prediction results w.r.t. the i-

th node. Following the same format, we rewrite the prediction from the preliminary predictor

g1 (i.e., softmax
(
g1(A,X, ϕ1)

)
from Eq. (3.24a)) as z̃(G, ϕ1, vi). In addition, we use yi to

represent the label of the i-th node. Then the objective of imbalanced episodic training for

Stager is,

ϕ∗
2 = argmin

ϕ2
Evi∈Q Lcla (z (G, θ∗, ϕ∗

1, ϕ2, vi) , yi) ,

s.t. θ∗, ϕ∗
1 = argmin

θ,ϕ1
Evj∈S Lcla (z (G, θ, ϕ1, ϕ2, vj) , yj) + λLcla (z̃ (G, ϕ1, vj) , yj) ,

(3.26)

where λ is a trade-off parameter and Lcla denotes the classification loss.

Remarks. First, in Eq. (3.26), the episodes are imbalanced according to Eq. (3.25). Second,

the preliminary classifier g1(ϕ1) should be trained from scratch to be shot-aware in every

episode; hence, ϕ1 is optimized in the lower-level objective and only ϕ2 is updated across

episodes. Finally, in implementation, for every episode, we pretrain the preliminary classifier

g1(ϕ1) based on Lcla(z̃(G, ϕ1, vj), yj) (which does not contain θ or ϕ2) to converge and keep

it fixed when solving the bilevel optimization problem in Eq. (3.21) (i.e., remove the term

λLcla(z̃(G, ϕ1, vj), yj) from the lower-level objective). Such a training strategy shows great

efficacy empirically. In principle, we can use any gradient descent-based optimization. To
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Algorithm 3.2: Imbalanced episodic training for Stager

Input : an attributed graph G = {A,X}, the hyper-parameters of the imbalanced
episode N , M , K, L, I;

Output: optimized ϕ2;
1 initialize ϕ2;
2 while ϕ2 not converged do
3 construct an imbalanced episode {E = {S,Q}} according to Eq. (3.25);
4 pretrain ϕ1 based on the classification loss given S;
5 initialize θ;
6 while θ not converged do
7 update θ based on the classification loss given S;
8 end
9 update ϕ2 based on the classification loss given Q;

10 end

compute the gradient of the upper-level problem, many choices such as the first-order ap-

proximation [117, 149] and iterative differentiation methods [150, 151] are available. At the

meta-test phase, we train the classifier f(θ) and preliminary classifier g1(ϕ1) from scratch

and fine-tune the second module of weight assigner parameterized with ϕ2 on all the labeled

nodes with sample re-weighting.

The training procedure is formally presented in Algorithm 3.2.

C - Discussion. If the nodes notated as ‘from Vpseudo-base’ are removed in Eq. (3.25), the

composition of both the support set Si and the query set Qi is the same as Eq. (3.20). From

another perspective, the conventional episodic training mimics the uniform distribution of

the number of nodes from the selected N (pseudo-novel) classes under the few-shot settings.

Our imbalanced episodic training takes one step further and mimics a more complex mixed

distribution from two uniform distributions (i.e., many shots for Cpseudo-base and few shots

for Cpseudo-novel).
Importantly, this training paradigm is independent of our model Stager, and it is even in-

dependent of the node classification task. In fact, it is a new general meta-training paradigm

which can be applied to most, if not all, of the generalized few-shot learning problem from

the meta-learning perspective. In addition, the idea behind the proposed imbalanced episode

training can be naturally generalized to other more realistic distributions such as the long-

tailed power-law distribution. We leave those interesting topics as future works.

We noticed that some existing efforts [60, 152, 153, 154] generalize the traditional episodic

training into a noisy variant (e.g., the shot per class in the support set is a random num-

ber). We elaborate on the similarity and differences between the noisy episodic training
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and our proposed imbalanced episodic training as follows. Both training strategies aim to

mimic a realistic training episode, where the training samples per class are not the same.

Our proposed imbalanced episodic training aims to emphasize the comparison between the

pseudo-based classes vs. the pseudo-novel classes (e.g., 50 shots vs. 5 shots) so as to empower

the training of the uncertainty-aware module. However, the noisy episodic training does not

have a specific focus on such a comparison. A potential improvement of the imbalanced

episodic training is to manually import some noise into the number of training samples.

For example, the shots of pseudo-base classes can be round(50 + noise) and the shots of

pseudo-novel classes can be round(5 + noise). We also leave those interesting explorations

as future works.

For the model complexity, compared with other models following the predict-then-propagate

design [23] (e.g., APPNP [23] and GPRGNN [121]), the proposed Stager needs two extra

models ϕ1 and ϕ2 from Eq. (3.24a) and Eq. (3.24b). For brevity, if both ϕ1 and ϕ2 have only

one hidden layer and the hidden feature dimension is the same as the raw feature dimension

d, the number of parameters of ϕ1 and ϕ2 are d2|C| and d|C|(p + 1), respectively. Here C is

the node class set and p is the propagation steps.

3.2.4 Experiments

Datasets. We use two E-commerce datasets: Amazon Clothing2 [136], Amazon Electron-

ics2 [136], and two citation datasets: Aminer3 [155], and Cora-Full4 [137]. Detailed statistics

of the datasets is in Table 3.8. All the datasets used in this paper are publicly accessible.

They are all anonymized, numerized, and do not contain personally identifiable information

or offensive content. For all the datasets, we only select classes whose number of nodes is

larger than or equal to 100, so that we can have sufficient test nodes for every class. For

the novel classes, we follow the N -way K-shot setup where N ∈ {5, 10} and K ∈ {1, 3}.
Also, we select many base classes (i.e. N ≪ |Cbase|) with 50 shots and select a part of

the base classes as the validation classes. Note that our setting is also known as the step

imbalance [156], where the novel classes are with k shots and the base classes are with 50

shots. We leave studies on other types of imbalance as future work. Our code and data are

accessible 5 with detailed dataset splits and hyperparameter settings.

2https://nijianmo.github.io/amazon/index.html
3https://www.aminer.cn/data/?nav=openData
4https://github.com/abojchevski/graph2gauss/tree/master/data
5https://github.com/pricexu/STAGER
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Table 3.8: Statistics of Datasets.

Dataset Nodes Edges Features Labels

Amazon Clothing 24919 91680 9034 77
Amazon Electronics 42318 43556 8669 167

Aminer 40672 288270 7202 137
Cora-Full 18800 62685 8710 56

Metrics. The performance of models is evaluated by the accuracy (ACC) on test nodes.

To be specific, we report the accuracy on the base classes, novel classes, and all the classes,

respectively. We report the average result, along with the standard deviation, in 10 runs.

Baseline Methods. The baseline methods which we compare our Stager-I (with imbal-

anced episodic training) and Stager (without imbalanced episodic training) with can be

categorized into (1) classic neural node classifiers including APPNP [23], and GPRGNN [121]

which follow the same predict-then-propagate design as our Stager; (2) few-shot neural

node classifiers including MetaGNN [125], GPN [124], and G-META [127]; (3) an imbalanced

node classifier GraphSMOTE [157] (short as G-SMOTE). Note that if we ablate the weight

assigner g from the proposed Stager, our model will degenerate into the GPRGNN [121]

whose weights of receptive fields are the same for every node.

Implementation. For the APPNP and GPRGNN, we train them with two strategies: (1)

pre-training models over the base classes and fine-tuning them over the novel classes or ‘novel

& base’ classes, and (2) training models over the imbalanced labeled nodes and re-weighting

nodes from the novel classes with high weights. We empirically find the performance from the

second strategy is better and we report their best performance in the following subsections.

For MetaGNN, GPN, and G-META, at the meta-training phase, we train them with the

existing episodic training. At the meta-test phase, we fine-tune MetaGNN on the imbalanced

labeled nodes. For GPN and G-META, at the meta-test phase, since their models and codes

are designed for the balanced few-shot settings, we downsample the labeled nodes from base

classes so that all the classes are few-shot. For GraphSMOTE, we implement its downstream

classifier as APPNP which shows strong performance. As GraphSMOTE conducts node

augmentation based on the nodes from novel classes only, when the shot is 1 for the novel

classes, there is no augmentation space and we report the same results as APPNP. When

shots are 3, GraphSMOTE augments novel classes first and then trains APPNP over the

augmented data.

For the proposed Stager, θ, ϕ1, and ϕ2 share the same number of hidden units which is
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searched from {24, 48, 72, 96, 120}. We train the model with Adam [158]. The learning rate

is searched from {1×10−2, 5×10−3, 1×10−3, 5×10−4} and the weight decay is searched from

{1×10−4, 5×10−4, 1×10−3, 5×10−3, 1×10−2, 5×10−2, 0.1}. The sample re-weighting is set

as 50 : N for the novel and base classes respectively. N is the number of ways for the novel

classes. The integer number of steps for propagation p is searched from [2, 10]. The dropout

rate of the classifier f and the weight assigner g is searched from {0, 0.2, 0.4, 0.5, 0.6, 0.8}.
For the imbalanced episodic training, the number of query nodes per class I = 30; the

number of pseudo-novel classes N and the number of shots per pseudo-novel class K follow

the specific N -way K-shot setup; the number of pseudo-base classes M is the number of all

the remaining base classes (i.e., M = |Cbase|−N); the number of shots per pseudo-base class

L = 40. We set the dropout variational inference parameter T = 10, as we observed that

when T ≥ 10, model performance becomes very stable. Our code and data are accessible

online6.

Main Results. Performance comparison on four datasets is presented in Table 3.9. We

have the following observations. First, existing few-shot node classifiers do not perform well

on the generalized few-shot node classification problem. For instance, MetaGNN does not

show advantages compared with classic methods such as APPNP; GPN and G-META can

obtain a decent performance on the novel classes but cannot fully utilize the labeled nodes

from the base classes during the meta-test phase, which in turn degrades its performance on

the base classes. Second, compared with classic neural node classifiers (APPNP, GPRGNN),

without imbalanced episodic training, the proposed Stager already outperforms them in

most cases and retains competitive in the remaining cases. Third, there is a trade-off between

the performance on the base and novel classes and we observe that, in most cases, the

proposed imbalanced episodic training can indeed significantly improve the performance on

the novel classes while keeping competitive performance on the base classes. Fourth, in

all the cases, our models (Stager and Stager-I) obtain the best overall performance

on all the settings consistently and significant improvements on some cases (e.g., 13.3%

improvement on all the classes on Amazon Electronic datasets with the 5-way 3-shot setting).

Finally, GraphSMOTE only leverages the novel classes to conduct node augmentation whose

advantage is restricted.

In addition, we provide the visualization of the prediction vectors of test nodes from the

novel classes in Figure 3.9. GPRGNN, G-META, GraphSMOTE, and Stager-I are selected

for the visualization and the experimental setting is selected as 5-way 3-shot on the Amazon

Clothing dataset. The visualization shows that Stager-I can effectively discriminate novel

6https://github.com/pricexu/STAGER
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Table 3.9: Performance comparison (mean±std accuracy %) on four datasets under different
N -way K-shot settings for novel classes. ‘Base’, ‘Novel’, and ‘All’ denote accuracies on the
base classes, novel classes, and the entire label space, respectively. Bold and underlined
numbers indicate the best and second-best performance, respectively.

Dataset Setting Class APPNP GPRGNN MetaGNN GPN G-META G-SMOTE STAGER STAGER-I

Amazon
Clothing

5w1s
Base 67.4±1.6 64.7±0.5 64.0±0.5 46.1±3.3 48.7±2.7 67.4±1.6 69.3±1.1 67.3±0.4

Novel 31.4±0.9 31.5±5.4 28.3±0.4 36.1±5.1 39.2±2.9 31.4±0.9 32.4±2.0 41.3±1.0

All 48.5±1.0 47.3±3.0 45.4±0.4 40.9±2.9 43.7±2.2 48.5±1.0 50.0±1.0 53.7±0.5

5w3s
Base 70.5±0.9 69.7±1.0 66.1±1.2 62.9±1.9 63.3±1.7 69.4±0.7 72.3±1.5 68.4±1.0

Novel 48.6±2.5 50.1±3.8 40.4±0.8 46.1±6.7 47.6±6.3 45.6±2.3 53.9±2.1 66.0±2.4

All 59.1±1.2 59.4±2.1 52.6±1.0 54.1±3.4 55.1±3.5 57.0±1.4 62.7±1.1 67.2±1.1

10w1s
Base 73.3±0.3 70.7±1.2 67.6±0.5 42.7±2.4 48.2±2.1 73.3±0.3 76.7±1.5 66.7±0.5

Novel 45.2±0.6 37.7±3.1 41.5±0.5 39.7±5.7 39.9±4.9 45.2±0.6 43.1±2.7 59.6±0.6

All 58.6±0.3 53.5±1.6 54.0±0.4 40.9±3.5 43.9±2.0 58.6±0.3 59.0±1.6 63.0±0.5

10w3s
Base 69.2±0.6 67.5±1.1 65.6±1.2 59.5±2.7 57.4±1.9 68.1±0.7 70.9±0.7 69.3±0.4

Novel 61.4±0.4 58.0±1.5 53.6±0.2 49.6±7.1 54.1±2.8 53.6±3.8 61.8±1.2 64.6±0.7

All 65.2±0.4 62.5±1.3 59.2±0.2 54.3±3.4 55.6±1.6 60.5±1.9 66.2±0.8 66.8±0.5

Amazon
Elec.

5w1s
Base 60.1±1.8 58.4±0.9 59.7±0.3 19.1±2.1 22.5±3.1 60.1±1.8 65.8±2.1 63.9±1.0

Novel 7.8±0.8 5.1±1.1 6.4±0.3 16.6±5.4 15.3±6.7 7.8±0.8 8.0±0.7 19.7±1.6

All 27.2±0.4 24.8±0.4 26.2±0.2 17.5±3.8 18.0±5.0 27.2±0.4 29.4±1.4 36.1±1.1

5w3s
Base 64.2±1.8 55.1±0.9 63.0±0.7 43.7±1.6 43.6±2.4 63.0±1.4 69.1±1.6 69.0±2.9

Novel 21.6±1.5 13.3±2.0 23.1±0.2 32.7±4.8 28.1±5.6 12.0±4.0 29.8±2.7 40.7±2.2

All 37.4±1.5 28.8±1.4 37.9±0.3 36.8±3.4 33.9±3.5 30.9±2.5 44.3±1.8 51.2±2.3

10w1s
Base 64.4±1.2 59.7±1.3 53.1±1.6 18.5±1.4 20.8±2.2 64.4±1.2 69.0±0.9 61.3±0.8

Novel 8.0±1.3 5.7±1.1 4.9±0.1 15.3±3.7 15.0±3.7 8.0±1.3 11.3±1.5 15.4±0.3

All 34.4±1.0 31.0±1.1 27.7±0.2 16.8±2.3 17.7±2.0 34.4±1.0 38.3±1.2 36.9±0.4

10w3s
Base 58.6±0.4 55.2±0.9 48.8±0.7 43.8±1.7 46.3±1.6 62.9±0.7 72.3±1.1 66.5±0.1

Novel 22.4±1.1 14.8±1.0 16.5±0.2 27.5±2.9 26.2±3.2 13.8±0.3 20.3±2.4 38.1±2.3

All 39.4±0.5 33.7±0.7 31.6±0.4 35.1±1.4 35.6±1.8 36.8±0.2 44.7±1.5 51.4±1.1

Aminer

5w1s
Base 40.8±1.0 38.2±1.7 40.4±0.4 19.4±1.5 25.4±1.7 40.8±1.0 40.9±1.0 36.1±1.1

Novel 24.8±2.3 12.4±2.3 7.6±0.2 20.0±6.4 22.2±4.6 24.8±2.3 29.7±1.2 37.2±1.6

All 32.5±1.3 24.8±1.1 23.5±0.3 19.7±3.1 23.7±2.6 32.5±1.3 35.7±0.6 36.7±1.3

5w3s
Base 42.5±1.6 39.8±1.5 42.6±0.4 23.0±1.9 38.2±1.4 39.2±1.5 42.0±1.1 39.6±0.2

Novel 33.1±0.9 29.3±2.5 33.4±0.3 21.4±4.2 34.9±4.4 36.3±1.3 36.2±0.8 44.4±0.3

All 37.6±0.9 34.4±0.8 37.8±0.2 22.2±2.1 36.5±2.4 37.7±0.4 39.0±0.9 42.1±0.3

10w1s
Base 41.2±1.3 41.0±0.8 42.6±0.4 19.6±1.5 23.4±1.8 41.2±1.3 40.3±1.6 40.4±0.4

Novel 11.2±1.2 4.1±1.3 11.6±0.3 16.1±4.0 15.5±4.4 11.2±1.2 16.8±0.6 21.8±1.1

All 25.7±0.6 22.0±0.7 26.6±0.2 17.8±2.2 19.3±2.3 25.7±0.6 28.2±1.1 30.7±0.5

10w3s
Base 41.7±1.2 43.1±1.5 42.4±0.2 26.3±1.5 34.7±1.5 39.1±0.5 46.2±0.8 40.4±0.6

Novel 21.6±0.3 17.7±1.8 24.5±0.3 18.7±3.8 23.4±4.8 23.0±1.4 21.6±0.6 27.8±1.0

All 31.3±0.6 30.0±1.1 33.1±0.2 22.4±2.2 28.9±2.1 30.8±0.9 33.5±0.6 33.9±0.7

Cora
Full

5w1s
Base 70.6±1.0 72.7±1.3 71.4±0.2 40.2±3.1 55.5±2.7 70.6±1.0 71.1±0.8 70.1±2.1

Novel 25.3±0.8 21.3±0.9 20.8±0.3 12.9±4.7 19.0±6.6 25.3±0.8 33.2±1.4 34.8±0.4

All 46.3±0.7 45.1±0.9 44.3±0.2 25.6±3.2 35.9±3.3 46.3±0.7 50.8±1.1 51.2±0.8

5w3s
Base 73.3±1.1 76.5±1.3 70.1±0.2 44.6±2.0 55.5±1.5 73.0±0.9 70.8±0.4 78.1±0.2

Novel 26.5±1.4 21.1±2.4 23.6±0.6 16.1±2.7 24.8±4.4 9.7±0.7 32.0±2.3 30.7±2.3

All 48.2±1.1 46.8±1.7 45.2±0.3 29.3±1.6 39.1±2.5 39.1±0.3 50.0±1.3 52.6±1.4

10w1s
Base 75.9±0.8 76.2±0.8 70.1±0.2 45.2±3.0 52.1±1.7 75.9±0.8 76.2±0.7 69.6±0.1

Novel 20.1±1.7 15.1±1.3 11.5±0.2 14.6±2.3 16.9±3.1 20.1±1.7 29.8±0.9 24.3±0.5

All 40.7±0.7 44.6±0.8 39.8±0.1 29.4±1.4 33.9±1.4 40.7±0.7 52.2±0.1 46.2±0.3

10w3s
Base 74.8±0.6 74.7±0.6 68.0±0.3 42.8±1.5 52.7±1.8 67.5±0.5 77.9±0.6 74.4±0.4

Novel 37.9±1.4 28.1±1.2 34.1±0.3 19.4±2.9 18.6±2.9 7.5±1.0 27.7±2.0 40.0±1.4

All 55.7±0.7 50.7±0.7 50.5±0.2 30.7±1.2 35.0±1.3 36.5±0.7 52.0±0.7 56.6±0.6
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(a) GPRGNN (b) G-META (c) GraphSMOTE (d) STAGER-I

Figure 3.9: Visualization of predictions from GPRGNN (a), G-META (b), GraphSMOTE
(c), and STAGER-I (d). Best viewed in color.

test nodes, which aligns well with the experimental results from Table 3.9.

Ablation Study: Weight Assigner. The weight assigner g is the key component of

Stager. If we remove the weight assigner and directly set the weights assigned to recep-

tive fields as trainable parameters, our model will degenerate to GPRGNN [121]. Hence,

we study the performance comparison between GPRGNN [121] and Stager(without im-

balanced episodic training) for the 10-way 3-shot setup and present the accuracy on the

novel classes and all the classes in Table 3.10a. Notice that the data is re-organized from

Table 3.9 where Amazon-C and Amazon-E represent Amazon Clothing and Amazon Elec-

tronics datasets, respectively. Clearly, we observe that with the weight assigner, in most

cases, the accuracy on novel classes and all the classes gets boosted significantly.

Ablation Study: Rank Operator. We stated in the main content that the rank op-

erator is designed to extract uncertainty from the prediction vectors. Here, we study the

performance comparison between Stager-I (without rank operator) and Stager-I (with

rank operator) for the 10-way 3-shot setup and present the accuracy on the novel classes and

all the classes in Table 3.10b where Amazon-C and Amazon-E represent Amazon Clothing

and Amazon Electronics datasets, respectively. Clearly, we observe that the rank operator,

in most cases, can significantly boost the accuracy on novel classes and all classes.

Ablation Study: Imbalanced Episodic Training. To study the effectiveness of imbal-

anced episodic training, first, we study the performance comparison between Stager (with-

out imbalanced episodic training) and Stager-I (with imbalanced episodic training) for the

10-way 3-shot setup. The accuracy on the novel classes and all the classes is presented in

Table 3.11a and this part of the data is re-organized from Table 3.9; then we implement

imbalanced episodic training on MetaGNN (notated as MetaGNN-I) for the 10-way 3-shot
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Table 3.10: Ablation study on the weight assigner g (a) and the rank operator (b) (mean±std
accuracy (%)). The number in parentheses indicates the performance comparison with the
ablated variants in the left columns.

(a) Weight assigner g

Dataset
Stager (without g) Stager (with g)

Novel All Novel All

Amazon-C 58.0±1.5 62.5±1.3 61.8±1.2 (+3.8) 66.2±0.8 (+3.7)
Amazon-E 14.8±1.0 33.7±0.7 20.3±2.4 (+5.5) 44.7±1.5 (+11.0)
Aminer 16.1±1.7 28.2±1.1 21.6±0.6 (+5.5) 33.5±0.6 (+5.3)
Cora Full 28.1±1.2 50.7±0.7 27.7±2.0 (-0.4) 52.0±0.7 (+1.3)

(b) Rank operator

Dataset
Stager-I (without rank) Stager-I (with rank)

Novel All Novel All

Amazon-C 57.8±1.1 61.7±0.7 64.6±0.7 (+6.8) 66.8±0.5 (+5.1)
Amazon-E 20.6±1.5 43.2±1.0 38.1±2.3 (+17.5) 51.4±1.1 (+8.2)
Aminer 23.6±0.9 35.9±0.7 27.8±1.0 (+4.2) 33.9±0.7 (-2.0)
Cora Full 34.8±0.9 49.1±0.8 40.0±1.4 (+5.2) 56.6±0.6 (+7.5)

Table 3.11: Ablation study on the imbalanced episodic training for Stager (a) and
MetaGNN (b) (mean±std accuracy (%)). The number in parentheses indicates the per-
formance comparison with the ablated variants in the left columns.

(a) Imbalanced episodic training for Stager

Dataset
Stager Stager-I

Novel All Novel All

Amazon-C 61.8±1.2 66.2±0.8 64.6±0.7 (+2.8) 66.8±0.5 (+0.6)
Amazon-E 20.3±2.4 44.7±1.5 38.1±2.3 (+17.8) 51.4±1.1 (+6.7)
Aminer 21.6±0.6 33.5±0.6 27.8±1.0 (+6.2) 33.9±0.7 (+0.4)
Cora Full 27.7±2.0 52.0±0.7 40.0±1.4 (+12.3) 56.6±0.6 (+4.6)

(b) Imbalanced episodic training for MetaGNN

Dataset
MetaGNN MetaGNN-I

Novel All Novel All

Amazon-C 53.6±0.2 59.2±0.2 56.4±0.3 (+2.8) 61.9±0.4 (+2.7)
Amazon-E 16.5±0.2 31.6±0.4 22.7±0.4 (+6.2) 42.5±0.6 (+10.9)
Aminer 40.2±0.5 38.1±0.2 36.5±0.8 (-3.7) 37.0±0.7 (-1.1)
Cora Full 34.1±0.3 50.5±0.2 33.1±0.5 (-1.0) 40.0±0.8 (-10.5)

setup to see the performance comparison on the novel classes and all the classes in Ta-

ble 3.11b. Amazon-C and Amazon-E represent Amazon Clothing and Amazon Electronics

datasets, respectively.

We observe that for Stager-I, compared with Stager, in most cases, accuracy on the

novel classes and that on all the classes gets improved, which demonstrates the effectiveness of

imbalanced episodic training. For MetaGNN-I we observe that the performance improvement

is not stable and may even hurt the performance dramatically. The key reason is that

existing few-shot node classifiers are designed for balanced scenarios, and are not able to

address the imbalanced distribution of shots between the base classes and the novel classes.

Hence, importing imbalanced shot distribution into the meta-training phase may even affect

the learning of existing few-shot node classifiers. We also tried to implement imbalanced

episodic training on GPN [124] and G-META [127] but they suffer from the out-of-memory

problem due to the great number of labeled base nodes so we do not report them here.

Hyperparameter Sensitivity Study. We conduct a hyperparameter sensitivity study on

two hyperparameters. The first is the steps of propagation p from Eq. (3.23c), which controls

the size of the set of prediction matrices {H(0), . . . ,H(p)}. We search p from [7, 12] and present

the accuracy of the base, novel, and all classes on the Cora-full dataset. Second, we study the
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(a) p (b) hidden dimension

Figure 3.10: Sensitivity study of the propagation steps p (a) and the hidden dimension (b).

sensitivity of Stager’s performance (on the Cora-full dataset) with respect to the hidden

representation dimension. We search the hidden dimension in {16, 32, 48, 64, 80, 96}. From

Fig. 3.10, we observe that in general, the performance of Stager is stable regarding p, and

when p = 9, our model obtains the best performance. Also, the performance of Stageris

stable with respect to the model’s hidden dimension.

Efficiency Study. In this section, we study the efficiency of the proposed model Stager with

the imbalanced episodic training. We use the wall-clock time for updating the model in an

episode as the metric. Meta-learning-based methods (MetaGNN [125], GPN [124], and G-

META [127]) are selected as baseline methods. For the novel classes, they follow the 10-way

3-shot setting. All efficiency study results are from a single NVIDIA Tesla V100 SXM2-32GB

GPU on a server with 96 Intel(R) Xeon(R) Gold 6240R CPUs at 2.40GHz and 1.5 TB RAM.

Table 3.12 presents the detailed time comparison on four datasets. We have the following

observations. First, GPN [124] and G-META [127] are the fastest, which is expected. That

is because their core idea is prototype learning [131], so their algorithms are single-loop (as

opposed to a bilevel optimization problem). Second, our proposed Stager is slower than

MetaGNN [125]. That is because our model structure (i.e., weight assigner g + multiple-step

classifier f) is more complex than the model used by MetaGNN (i.e., SGC [22]). Third, in

general, the proposed Stager can finish the imbalanced episodic training efficiently (e.g.,

about 30 minutes for 1000 episodes).

Case Study: Uncertainty vs. Propagation. In this case study, we design experiments

to answer two research questions: (1) whether there exists a general epistemic uncertainty

gap between the many-shot classes and few-shot classes (beyond novel vs. base classes)? (2)

How to select g1 (i.e., the preliminary classifier for weight assigner g)?
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Table 3.12: Efficiency comparison (second/episode) with the baseline methods.

Dataset MetaGNN GPN G-Meta Stager-I

Amazon-C 0.46 0.39 0.42 1.33
Amazon-E 0.64 0.31 0.36 2.21
Aminer 0.58 0.31 0.40 2.26
Cora Full 0.30 0.24 0.30 0.90

Figure 3.11: Uncertainty comparison between classifiers with different propagation steps.
For ‘Max’ and ‘Gap’, the smaller the more uncertain. For ‘Entropy’, the larger the more
uncertain. Our goal is to select p where |∆| is the largest.

(a) MLP(X) (b) MLP(ÃX) (c) MLP(ÃÃX)

Figure 3.12: Visualization of predictions based on attributes from different propagation.
Green points and orange points are predictions of novel classes and base classes respectively.
Best viewed in color.

We use the following three metrics to measure the uncertainty in prediction vector z: (1)

Max: the largest entry of z; (2) Gap: the gap between the largest entry and the second

largest entry of z; (3) Entropy: −
∑

i z[i] log(z[i]). To clearly illustrate the influence of
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propagation on the prediction uncertainty, we select three direct models: (1) MLP(X), (2)

MLP(ÃX), (3) MLP(ÃÃX), where X is the node feature matrix and Ã is symmetrically

normalized adjacency matrix. The softmax is applied to normalize the predictions. To

measure the epistemic uncertainty, we adopt the dropout variational inference [144, 146] as

introduced in Section 3.2.3.

Our experiment design is as follows. First, 50 nodes are randomly selected from every

class as test nodes. Second, half of the classes are randomly selected as the novel classes and

the remaining classes are the base classes. The training nodes are composed of 1 node per

novel class and 50 nodes per base class. Third, the aforementioned three models are trained

on the training nodes, and their prediction uncertainty on test nodes is evaluated by the

three metrics (i.e., Max, Gap, Entropy) with the dropout variational inference. We repeat

the above steps in 10 runs to report the average uncertainties on novel and base classes

respectively. Notice that in every run, the base/novel split is different.

The experimental results are shown in Fig. 3.11 where x-axis represents models MLP(X),

MLP(ÃX), and MLP(ÃÃX) respectively (i.e., the propagation step is p = 0, p = 1 and p = 2

respectively). |∆| denotes the average uncertainty gap between base and novel classes. We

have the following observations. First, generally, the uncertainty on the novel classes is much

higher than that on the base classes. The above finding directly motivates our model design

to set the uncertainty-related module (i.e., ϕ2 in the weight assigner g) as a meta-learner

and learn high-level knowledge (i.e., knowledge can be extracted from the broad base classes

by constructing imbalanced episodes) to empower the shot-aware node classifier Stager.

Second, with the increment of propagation steps, the classifier (i.e. MLP) is less uncertain

on both the novel and base classes. Importantly, the uncertainty gap |∆| is also reduced.

Therefore, to let the weight assigner g be sensitive about the difference of shots (reflected

by the uncertainty) between the base and novel classes, we set g1 as MLP(X) to retain the

uncertainty gap as large as possible.

We also provide the visualization of prediction vectors for the base and novel classes in

Fig. 3.12. Remark that the prediction vectors are collected from 10 runs and in every run,

the base/novel split is different. Naturally, if the model’s uncertainty gap between the base

and novel classes is larger, the prediction vectors of the base and novel nodes should be

more differentiable. Clearly, the visualization results align well with our conclusion from the

above case study.
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CHAPTER 4: GRAPH AUGMENTATION

4.1 NODE CLASSIFICATION BEYOND HOMOPHILY: TOWARDS A GENERAL
SOLUTION

4.1.1 Introduction

Graph neural networks (GNNs) have demonstrated great power as building blocks for a

variety of graph learning tasks, such as node classification [20, 159], graph classification [160],

link prediction [161, 162], clustering [163], and many more. Most of the existing GNNs follow

the homophily assumption, i.e., edges tend to connect nodes with the same labels and similar

node features. Such an assumption holds for networks such as citation networks [137, 164]

where a paper tends to cite related literature. However, in many other cases, the heterophilic

settings arise. For instance, to form a protein structure, different types of amino acids are

more likely to be linked together [32]. On such heterophilic networks, the performance of

classic GNN models [21, 23, 165] could degrade significantly and might be even worse than

a multilayer perceptron (MLP) which does not utilize any topology information at all [32].

In response, researchers have analyzed the limitations of existing GNNs in the presence of

node heterophily and proposed specific models to address this issue from both spatial and

spectral perspectives. For instance, an important design by H2GCN [32] is that high-order

neighbors should be considered during message aggregation. GPRGNN [166] also aggregates

messages from multi-hop neighbors but it emphasizes that messages can also be negative via

a set of learnable aggregation weights. From the spectral perspective, FAGCN [167] points

out that low-pass filter-based GNNs smooth the node representations between connected

nodes, which is not desirable for the heterophilic settings where connected nodes are more

likely to have different labels. Hence, FAGCN [167] adaptively mixes the low-pass graph

filter with the high-pass graph filter via an attention mechanism to tackle this problem.

Despite the theoretical insights and empirical performance gains, most existing works focus

on the model level, i.e., they aim to propose better GNN models to handle the heterophilic

graphs. In other words, the success of their methods relies on specific designs of GNN

models. In this paper, we take a step further and ask: how to develop a generic method to

benefit a broad range of GNNs for node classification beyond homophily, even if they are not

tailored initially for the heterophilic graphs? To this end, we address this problem from a

structure learning [168] perspective, that is, we optimize the given graph structure to benefit

downstream tasks (e.g., node classification). Unlike existing approaches that refine specific
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GNN models, our approach focuses on the data level by optimizing the graph topology to

address heterophily.

Challenges. In pursuing a data-centric general solution, the following are the key chal-

lenges. First (model diversity), our goal is to enhance the capabilities of a broad range of

established GNNs, enabling them to handle graphs with arbitrary homophily. However, the

aggregation mechanism and graph convolution kernels differ between various GNN models.

It is unknown how to accommodate diverse GNNs seamlessly. Second (theoretical founda-

tion), analyses on the success of some specific GNNs for heterophilic graphs have recently

emerged (e.g., from the graph signal processing perspective [169]). However, few works focus

on the theoretical foundation of structure learning and its connection to dealing with graphs

with low homophily.

4.1.2 Preliminaries

Notations. We use bold uppercase letters for matrices (e.g., A), bold lowercase letters

for column vectors (e.g., u), lowercase and uppercase letters in regular font for scalars (e.g.,

d, K), and calligraphic letters for sets (e.g., T ). We use A[i, j] to represent the entry of

matrix A at the i-th row and the j-th column, A[i, :] to represent the i-th row of matrix A,

and A[:, j] to represent the j-th column of matrix A. Similarly, u[i] denotes the i-th entry

of vector u. Superscript ⊤ denotes the transpose of matrices and vectors. ⊙ denotes the

Hadamard product.

An attributed graph can be represented as G = {A,X} which is composed of an adjacency

matrix A ∈ Rn×n and an attribute matrix X ∈ Rn×d, where n is the number of nodes and d

is the node feature dimension. In total, nodes can be categorized into a set of classes C. The

normalized Laplacian matrix is L̃ = I−D− 1
2AD− 1

2 where D is the diagonal degree matrix

of A. It can be decomposed as L̃ = UΛU⊤ where U ∈ Rn×n is the eigenvector matrix and

Λ ∈ Rn×n is the diagonal eigenvalue matrix. In graph signal processing [169], the diagonal

entry of Λ represents frequency and Λ[i, i] = λi. Given a signal x ∈ Rn, its graph Fourier

transform [169] is represented as x̂ = Ux, and its inverse graph Fourier transform is defined

as x = U⊤x̂. For a diffusion matrix C ∈ Rn×n, its frequency response (or profile [170]) is

defined as Φfp = diag(U⊤CU) where diag(·) returns the diagonal entries. This frequency

response is also known as the filter and the convolution kernel.

Semi-supervised Node Classification. In this paper, we study semi-supervised node

classification [20, 164] where the graph topology A, all node features X, and a part of node

labels are given and our goal is to predict the labels of unlabelled nodes. Numerous works [20,

21, 23] achieve impressive performance on this problem. However, recent studies show that
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(a) A given filter (b) Reflection (c) Reflection + offset

Figure 4.1: The Illustration of obtaining a filter with complementary filter characteristics.
Given a filter (a), its reflected frequency response (b) with offset (c) has complementary
filter characteristics.

their successes heavily rely upon the homophily assumption of the given graphs [32, 171]. In

general, homophily describes to what extent edges tend to link nodes with the same labels

and similar features. Following previous works [32, 172], this paper focuses on the node

label homophily. There are various homophily metrics and we introduce one of them named

edge homophily [32] as: h(G) =
∑

i,j,A[i,j]=1Jy[i]=y[j]K∑
i,j A[i,j]

∈ [0, 1], where JxK = 1 if x is true and 0

otherwise. The more homophilic a given graph is, the closer its h(G) is to 1.

4.1.3 Proposed Methods

In this section, we first propose a flexible method named ALT-global, which empowers a

wide range of GNNs with adaptive filter characteristics. Next, we carefully analyze the ex-

pressiveness of ALT-global from the graph signal processing perspective [169]. This analysis

guides the design of another more advanced method named ALT-local, which enhances the

spectral expressiveness of a broad range of GNNs to be local adaptive filters by modulating

the input graph signals.

ALT-global: A Global Adaptive Method. Intuitively, nodes with different labels

should be located as far as possible in the embedding space, and nodes with the same

labels should be assigned closely. This intuition is aligned well with the utility of many clas-

sic GNNs (e.g., GCN [20]) on homophilic graphs. That is because, on homophilic graphs,

many same-label nodes are connected, whose embeddings will be smoothed by those classic

low-pass filter GNNs [167, 170]. In contrast, the performance of low-pass filter GNNs on

heterophilic graphs degrades significantly, as the embeddings of connected nodes should not

be smoothed. Many efforts [166, 167, 173] highlight that a key approach for handling graphs

with unknown homophily is to equip GNNs with an adaptive filter.
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We aim to propose a data-centric solution such that minimal modification on the given

GNNs (e.g., a low-pass filter GNN) is needed. As we do not make any assumption about the

filter characteristic of the given GNN, its filter can be either low-pass, high-pass, band-pass,

or others. To equip the given GNN with an adaptive filter, our core idea is to adaptively

combine signals from two filters with the complementary filter characteristics. For example,

if a low-pass filter GNN is given, it should be adaptively combined with another high-pass

filter. To find such a complementary filter, a two-step modification of the frequency response

is needed. Figure 4.1 shows that we can first reflect the frequency response curve over the

frequency axis and then set an appropriate offset to the reflected frequency response. Guided

by this idea, the mathematical details of the proposed ALT-global are as follows,

H1 = GNN (wA,X, θ1) , (4.1a)

H2 = GNN ((1− w)A,X, θ2) , (4.1b)

Hoffset = MLP (X, θ3) , (4.1c)

Z = softmax (H1 −H2 + ηHoffset) , (4.1d)

where θ1 and θ2 are the parameters of the backbone dual GNNs (i.e., GNNs from Eq. 4.1a

and Eq. 4.1b), θ3 is the parameter of a multi-layer perceptron (MLP), η ∈ R and w ∈ [0, 1] are

learnable parameters, and Z ∈ Rn×C is the prediction matrix. Here the softmax is applied

row-wise. For models using the normalized adjacency matrix (e.g., Ã = (D+ I)−
1
2 (A +

I) (D+ I)−
1
2 ) as the diffusion matrix (e.g., GCN [20]), the re-weighting can be set over the

normalized adjacency matrix (i.e., wÃ and (1− w)Ã).

We elaborate more on the design of ALT-global. First, all the insights we obtained

from Figure 4.1 apply to the convolution kernel directly. Nonetheless, since our method

works in a plug-and-play fashion that does not modify the backbone GNNs, it uses a well-

designed aggregation (i.e., Eq. 4.1d) to achieve an equivalent effect. Specifically, (1) H1 is

the signals from a backbone GNN with positive re-scaling; (2) −H2 is the negative signals

that correspond to the signals from a reflected filter; (3) ηHoffset is the offset term, which is

equivalent to signals from an all-pass filter. Second, the adaptive mixture of the above three

sets of graph signals is controlled by the learnable parameters w and η. Other aggregation

functions are also applicable. One of the options is an MLP whose input is the concatenation

of H1, H2, and Hoffset. However, it is not used in this paper because (1) it increases the

analysis difficulties dramatically and (2) empirically, no performance advantage is observed in

the ablation study (Section 4.1.4). Analysis in the following section shows that ALT-global

bears strong flexibility in filter characteristics.
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Analysis of ALT-global. For brevity, in the analysis, we assume that the backbone GNNs

are graph-augmented MLPs (GA-MLPs) as defined below. This is because many GNNs fall

into the GA-MLP family if part of the nonlinear functions is removed; also, GA-MLPs have

shown strong empirical performance while enjoying provable expressiveness [174].

Definition 4.1. Graph-Augmented Multi-Layer Perceptron (GA-MLP) [174] is a

family of GNNs that first conduct feature transformation via an MLP and then diffuse the

features. Mathematically they compute node embeddings as H = C ·MLP(X) where C is the

diffusion matrix.

The (full) frequency profile [170] is used for analysis as follows.

Definition 4.2. Frequency profile [170] is defined as

Φfp = diag(U⊤CU) where diag(·) returns the diagonal entries if U⊤CU is a diagonal

matrix. In case U⊤CU is not a diagonal matrix, full frequency profile [170] is defined as

Φ = U⊤CU.

It is well-known that the frequency profile of a diffusion matrix (if diagonal) is a filter/-

convolution kernel for the input graph signal. Next, we show that ALT is indeed equipped

with an adaptive filter.

Lemma 4.1. The filter characteristic of the proposed ALT-global (Eq. 4.1d) is adaptive

regardless of the frequency filtering functionality of the backbone GNNs (Eq. 4.1a and

Eq. 4.1b).

Proof. For analysis convenience, we assume (1) the learnable weight w is multiplied with the

diffusion matrix C, and (2) the backbone GNNs are GA-MLPs whose MLP modules (from

Eq. 4.1a and Eq. 4.1b) share common parameters with the offset MLP (from Eq. 4.1c).

We start from the case where backbone GNNs are fixed low-pass filters. Without loss of

generality, their corresponding full frequency profiles can be presented as Φ = I − ξ(Λ)

where ξ is a monotonically increasing function. Then, in this case, the diffusion matrices

from two GNNs are re-weighted as wC and (1 − w)C respectively. Considering the offset

MLP as a special GA-MLP whose diffusion matrix is I, the aggregated graph signals are

wC · MLP(X)− (1−w)C · MLP(X)+ ηI · MLP(X) = C̃ · MLP(X) where the aggregated diffusion

matrix is C̃ = wC − (1 − w)C + ηI. Hence, the diagonal entry of the corresponding full

frequency profile is

Φ[i, i] = Φ(λi) = (2w − 1)(1− ξ(λi)) + η. (4.2)

When w > 0.5, i.e., 2w− 1 > 0, Φ(λi) is a monotonically decreasing function. The proposed

method is a low-pass filter when η > 0. Similarly, it is a high-pass filter when w is close
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to 0 and η > 1. The above conditions are sufficient, and in fact, there are many other

combinations of w and η which lead to low-pass/high-pass filters. Similar results can be

obtained when the backbone GNNs are fixed high-pass filters, and we omit that part for

brevity. QED.

Remarks. The filter characteristics of the ALT-global can also be interpreted from the

Graph Diffusion Equation (GDE) [175] perspective, and we provide the GDE-related analysis

in the following content.

Global Filters vs. Local Filters. ALT-global is proved to be equipped with adaptive

filter characteristics. However, ALT-global fundamentally applies a global filter to every

node, which could lead to suboptimal performance. Recent studies [176, 177] reveal that

heterophilic connection patterns differ between different nodes. Take gender classification

on a dating network as an example. While node pairs are often of different labels (i.e.,

genders), homosexuality also exists between some node pairs. Therefore, simply applying a

global low-pass or high-pass filter over all the nodes can degrade the overall classification

performance.

Next, we study how to generalize our proposed ALT-global to a local (i.e., node-specific)

and adaptive filter. Before that, let us take a closer look at the full frequency profile [170]:

Φ = U⊤CU. In the following proposition, we point out that Φ can describe both the filter

and modulator characteristics of a given diffusion matrix C.

Proposition 4.1. The diagonal entries of the full frequency profile Φ of the diffusion matrix

serve as the filter and the non-zero off-diagonal entries are the frequency modulator.

Proof. The diffusion of the input graph signal Xin = MLP(X) can be represented as CXin =

UΦU⊤Xin = U(ΦX̂in), where X̂in is the input graph signal in spectral domain. From the

perspective of graph signal processing [169], (ΦX̂in)[i :] represents the amplitude of output

graph signal whose frequency is λi. We further expand the computation and obtain

(ΦX̂in)[i :] =
∑
j

Φ[i, j] ·Xin[j, :]. (4.3)

In the summation, the diagonal terms of Φ represent the filter/convolution kernel which has

been adopted by many spectral GNNs [170]. If non-zero off-diagonal entries of Φ exist, it

shows that the λi-component of the output graph signal is merged with scaled (by Φ[i, j])

λj-component of the input graph signal which is essentially the modulation [169]. QED.
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Based on the above property of the full frequency profile Φ, the following proposition

points out the key design for local filter characteristics.

Proposition 4.2. Modulation of the input graph signal (i.e., non-zero off-diagonal en-

tries of Φ) is necessary for local filters.

Proof. We follow the terminology used in the proof of Proposition 4.1. If the full frequency

profile Φ only contains non-zero diagonal entries, we can obtain

(ΦX̂in)[i, :] = (diag(Φ))⊤ ⊙ X̂in[i, :], (4.4)

where diag extracts the diagonal entries into a vector from the input square matrix. Hence,

if we define the scaling of the λi-frequency signal over node p after and before the operator

Φ as SCALING(i, p,Φ) = (ΦX̂in)[i,p]

X̂in[i,p]
, from Eq. (4.4) we have

∀i, p, q, SCALING(i, p,Φ) = SCALING(i, q,Φ) (4.5)

i.e., for any specific frequency (e.g., λi), its scaling over any two nodes (p and q) are equal.

In other words, the filter Φ works globally over every node. If we expect the filter Φ to not

work globally, i.e.

∃i, p, q, SCALING(i, p,Φ) ̸= SCALING(i, q,Φ). (4.6)

The above inequality is equivalent to∑
k,k ̸=iΦ[i, k] · X̂in[k, p]

X̂in[i, p]
̸=
∑

k,k ̸=iΦ[i, k] · X̂in[k, q]

X̂in[i, q]
. (4.7)

Assume that ∀k, if k ̸= i, Φ[i, k] = 0, and then the left-hand side is equal to the right-hand

side which leads to a contradiction. Hence, non-zero off-diagonal entries of the full frequency

profile Φ must exist if we expect the filter to not work globally. Notice that the above

definition of scaling (e.g., (ΦX̂in)[i,p]

X̂in[i,p]
) is not fully aligned with the classic graph filtering [169]

but a combination of filtering and modulation as we mentioned in Proposition 4.1. QED.

Next, we present a family of GA-MLPs whose spectral expressiveness is limited to a global

filter.

Proposition 4.3. A family of GA-MLPs are global filters if their full frequency profiles are

in the form of C =
∑

k akÃ
k + bI which only contains non-zero diagonal entries.

Proof. Since {Ãk} and I share the same eigenvectors, the diffusion matrix can be decomposed
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as

C =
∑
k

akÃ
k + bI = U

(∑
k

ak

(
I− Λ̃

)k
+ bI

)
U⊤. (4.8)

Hence, the frequency profile is Φ =
∑

k ak

(
I− Λ̃

)k
+ bI whose off-diagonal entries are

zero. QED.

A wide range of GA-MLPs (e.g., SGC [22], APPNP [23]) follow the above form and

therefore cannot modulate graph signal. Unfortunately, even when they are equipped with

our proposed ALT-global, they are still global filters because ALT-global assigns the same

weight to every edge (i.e., wÃ and (1− w)Ã).

ALT-local: A Local Adaptive Method. In this subsection, we propose a more flexible

method based on ALT-global. Our goal is to empower the backbone GNNs with local

adaptive signal filtering capabilities, which is an essential property for capturing complex

heterophilic connection patterns [176, 177]. According to Proposition 4.3, we know that if

all the edges are assigned with the same weight (e.g., wÃ) the corresponding full frequency

profile will only contain diagonal non-zero entries. Lemma 4.2 provides a critical clue on

how to bring non-zero off-diagonal entries in full frequency profiles.

Lemma 4.2. By re-weighting the edge weights non-uniformly (i.e., if re-weighting by W⊙
Ã, ∃i, j, k, l,W[i, j] ̸= W[k, l]), the off-diagonal entries of Φ can be non-zero.

Proof. We follow the assumption mentioned in the proof of Lemma 4.1. The diffusion matrix

C can be decomposed as C = UΦU⊤. For the full frequency profile Φ, its off-diagonal entry

Φ[i, j] =
∑

l,kU[l, i]C[l, k]U[k, j] = 0,∀i ̸= j. If we re-weight the diffusion matrix by W⊙C

such that W[l, k] = wlk and W[i, j] = w ̸= wlk,∀i ̸= l and j ̸= k. In other words, we start

from the most basic case where only one edge (l, k) (C[l, k] ̸= 0) is re-weighted by wlk and

all the remaining edges are re-weighted as w. Given the zero off-diagonal entries of Φ we

have

Φre-weighted[i, j] =
(
U⊤(W ⊙C)U

)
[i, j]

=
(
U⊤(W ⊙C)U

)
[i, j]− wΦ[i, j]

= U[l, i]C[l, k]U[k, j](wlk − w).

(4.9)

It is common to find i and j (j ̸= i) such that U[l, i]U[k, j] ̸= 0, and thus we have

Φre-weighted[i, j] ̸= 0 as long as wlk ̸= w. Therefore, we proved that if the edge weights

are re-weighted non-uniformly, the off-diagonal entries of Φ can be non-zero, i.e., the GNN

can be a local filter. QED.
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Figure 4.2: The proposed ALT-local.

Guided by Lemma 4.2 we modify ALT-global as follows so that the edge weights are

different:

H1 = GNN(W ⊙A,X, θ1), (4.10a)

H2 = GNN((1−W)⊙A,X, θ2), (4.10b)

Hoffset = MLP (X, θ3) , (4.10c)

Z = softmax (H1 −H2 + ηHoffset) , (4.10d)

One option is to set W as a learnable parameter which is prune to overfitting as the number

of parameters is equal to the number of edges. Therefore, we parameterize the edge weight

W by an edge augmenter as follows,

H = GNNaug (A,X, ϕ1) , (4.11a)

W[i, j] = wij = sigmoid(MLP (H[i, :]||H[j, :], ϕ2)) (4.11b)

where ϕ1 and ϕ2 are the parameters of the augmenter GNN and a multi-layer perceptron

(MLP) respectively. Here we first obtain the node embedding matrix via the augmenter GNN

(i.e., GNNaug) in Eq. 4.11a. Then we concatenate node embeddings into edge embeddings

(i.e., H[i, :]||H[j, :]). The edge weight (i.e., wij) is computed via an MLP with sigmoid

activation. Naturally, the node embeddings from the augmenter GNN (Eq. 4.11a) should

be as discriminative as possible so that the edge importance can be better measured. Thus,

we use a two-layer high-pass filter GNN as the GNNaug whose mathematical formulation is as
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follows,

GNNaug(A,X, ϕ1) = Ã2
highMLP(X, ϕ1), (4.12a)

Ãhigh = ϵI−D− 1
2AD− 1

2 , (4.12b)

where ϵ is a scaling hyperparameter to adjust the amplitude of the high-pass filter. We name

the above model (i.e., Eqs.4.10a-4.12b) as ALT-local , which is summarized in Figure 4.2.

Remarks. Our method is partly inspired by FAGCN [167]. We clarify the uniqueness and

advantages of our work in comparison to FAGCN as follows. From a methodological per-

spective, FAGCN explicitly combines high-frequency and low-frequency signals. ALT gen-

eralizes this idea to the ‘mixture of complementary filters’; thus, even though the backbone

GNN’s convolution kernel is unknown, ALT can still boost its performance decently, which

provides great generality. For the theoretical analysis, [167] analyzes the spatial effects of

signals with different frequencies. Our analysis takes a solid step forward to reveal the in-

trinsic connections between (i) the full frequency profile, (ii) graph signal modulation, and

(iii) local adaptive filters.

Training Objective. The optimization objective of ALT is as follows.

ϕ∗, θ∗ = argmin
θ,ϕ
Lcla(g(G, ϕ), θ,Y) (4.13)

where the augmenter is denoted as g(·) whose parameter is ϕ and the dual backbone GNNs

are parameterized as θ for brevity. Specifically, for the ALT-global, θ = {θ1, θ2, θ3} and

ϕ = w are from Eq.4.1a, Eq.4.1b, and Eq.4.1c. For ALT-local, θ = {θ1, θ2, θ3} is from

Eq. 4.10a, 4.10b, and Eq. 4.10c; ϕ = {ϕ1, ϕ2} is from Eq. 4.11a and 4.11b. Lcla is cross-

entropy loss between the classification results (Eq. 4.1d for ALT-global and Eq. 4.10d for

ALT-local) and the labeled nodes.

If all the feature dimensions of different layers (including the input layers) from different

backbone GNNs and MLPs are denoted as d and all the models (GNNs and MLPs) contain

2 feature transformation matrices, the number of trainable parameters of ALT-local is com-

posed of three parts: (1) GNNaug (2d
2), (2) MLP from Eq. 4.11b (2d2+d), (3) GNN1, GNN2, and

offset MLP (3d2 +3dc) where c is the number of classes. In practice, the parameter number

is much smaller than the estimated number. For example, for datasets whose d > 500,

empirically, setting the hidden dimension as 32 is enough. However, compared with vanilla

backbone GNNs (e.g., a simple GCN [20]), ALT-local inevitably contains more parameters

as ALT-local is composed of 3 GNNs and 2 MLPs in total. Even for ALT-global, it is still
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Table 4.1: Performance comparison (mean±std accuracy) on heterophilic graphs. The last
column indicates the average performance boost for a specific backbone GNN for all the
datasets.

Backbone ALT? Chameleon Squirrel Texas Wisconsin Cornell Film Cornell5 Penn94 Avg. ∆

GCN
No 58.4±1.1 35.4±0.6 57.6±3.5 51.2±1.6 55.9±1.6 28.1±0.3 72.1±0.1 74.7±0.3

+12.4
Yes 65.8±0.9 52.4±0.8 70.9±4.3 76.4±3.9 73.9±5.1 35.5±1.2 77.5±0.1 80.1±0.4

SGC
No 58.4±0.6 37.1±0.4 58.6±1.9 48.3±1.8 57.0±3.4 27.3±0.1 72.6±0.4 75.0±0.4

+11.9
Yes 65.6±2.0 53.2±0.6 71.5±2.8 72.8±1.6 72.1±9.0 34.9±0.8 79.0±0.3 80.2±0.1

APPNP
No 48.0±1.2 33.8±0.4 59.5±1.1 48.8±2.0 56.3±1.4 28.7±0.3 70.6±0.5 73.4±0.4

+15.1
Yes 65.4±1.1 53.2±0.9 71.2±2.9 76.6±2.7 78.4±3.4 34.0±0.3 79.7±0.1 81.7±0.4

GPRGNN
No 59.2±2.5 38.4±0.8 69.1±1.0 72.4±1.6 69.6±2.5 32.1±1.1 74.3±1.3 78.7±0.3

+7.1
Yes 66.7±0.9 53.0±1.0 75.4±2.4 79.7±0.5 70.6±1.5 32.8±1.0 80.2±0.8 82.3±0.4

FAGCN
No 54.3±1.9 32.5±1.4 61.5±1.3 56.6±5.2 66.0±1.7 33.8±0.7 69.1±0.2 72.8±0.3

+11.1
Yes 64.5±1.0 52.8±1.4 69.4±0.7 76.4±5.7 75.1±6.8 35.7±0.5 79.9±0.1 81.9±0.4

H2GCN
No 49.9±1.4 31.5±0.8 67.6±2.1 70.4±2.1 69.4±3.3 34.5±0.3 69.5±0.4 73.5±0.1

+8.1
Yes 61.5±0.7 51.6±0.5 76.0±4.7 77.7±4.4 78.4±3.4 35.7±0.3 71.4±0.2 78.7±0.8

composed of 2 GNNs and 1 MLP. Hence, the increased number of parameters is a potential

limitation of ALT-local and ALT-global.

4.1.4 Experiments

Datasets. 16 datasets are used including Cora [164], Citeseer [164], Pubmed [164],

DBLP [137], Computers [178], Photos [178], CS [178], Physics [178], Cornell [172], Texas [172],

Wisconsin [172], Chameleon [179], Squirrel [179], Film [172], Cornell5 [180], and Penn94 [180].

We obtain all the datasets from pytorch-geometric1, which are publicly available. In the

effectiveness study, in order to compare with the state-of-the-art methods, we adopt the

dataset split 48/32/20% (training/validation/test) from a recent work ACM-GCN [181]. In

the other subsections, to fully test the applicability of ALT, we use the following challeng-

ing dataset split: (1) we follow the given dataset split for Cora (8.5/30.5/61.0%), Cite-

seer (7.4/30.9/61.7%), and Pubmed (3.8/32.1/64.1%); (2) for the remaining datasets, we

randomly split them into 20/20/60% (training/validation/test). Detailed statistics of the

datasets are presented in Table 4.2 and Table 4.3.

Accuracy (ACC) is adopted as the metric. We report the average accuracy with the

standard deviation in 10 runs. The code is available2.

Applicability of ALT. As the primary goal of this paper is to propose a general solu-

tion for handling graphs with arbitrary homophily, this section examines the applicability

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
2https://github.com/pricexu/ALT
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Table 4.2: Dataset statistics of heterophilic graphs.

Dataset Chameleon Squirrel Texas Wisconsin Cornell Film Cornell5 Penn94

# Nodes 2,277 5,201 183 251 183 7,600 18,660 41,554
# Edges 62,792 396,846 325 515 298 30,019 1,581,554 2,724,458

# Features 2,325 2,089 1,703 1,703 1,703 932 4,735 4,814
# Classes 5 5 5 5 5 5 2 2
h(G) 0.231 0.222 0.108 0.196 0.305 0.219 0.479 0.470

Table 4.3: Dataset Statistics of homophilic graphs.

Dataset Cora Citeseer Pubmed DBLP Computers Photos CS Physics

# Nodes 2,708 3,327 19,717 17,716 13,752 7,650 18,333 34,493
# Edges 10,556 9,104 88,648 105,734 491,722 238,162 163,788 495,924

# Features 1,433 3,703 500 1,639 767 745 6,805 8,415
# Classes 7 6 3 4 10 8 15 5
h(G) 0.810 0.736 0.802 0.828 0.777 0.827 0.808 0.931

of the proposed approach, ALT. Specifically, we select 6 representative backbone node clas-

sifiers including 3 classic GNNs: GCN [20], SGC [22], and APPNP [23], and 3 adaptive

GNNs: GPRGNN [166], FAGCN [167], and H2GCN [32] which use specific designs to tackle

graphs with low homophily. We aim to compare the performance improvement of the above

backbone classifiers after being equipped with ALT. As ALT-local is more powerful than

ALT-global, we mainly show the performance improvement after being equipped with ALT-

local (short as ALT). The comparison between ALT-local and ALT-global will be presented

in the ablation study below.

We present the performance comparison on heterophilic graphs in Table 4.1 and have the

following observations. First, on the heterophilic graphs, in general, our method ALT can

significantly improve the performance of most of the existing GNNs, especially for methods

originally not designed for the heterophilic graphs (e.g., GCN, SGC, and APPNP), whose

performance, on average, is improved by over 10%. Second, over the heterophilic graphs,

the performance improvement of adaptive GNNs (e.g., GPRGNN, FAGCN, and H2GCN) is

not as significant as that of low-pass filter GNNs. This is expected, as these methods have

already addressed heterophily to some extent. Nonetheless, we still gain 7-11% performance

improvements averaged over all 8 heterophilic datasets.

The performance comparison on homophilic graphs is presented in Table 4.4. We test 48

graph-GNN combinations, out of which, 29 cases show accuracy improvements ≥ 0.5%. It is

worth noting that even though GCN, SGC, and APPNP are designed mainly for homophilic

graphs, the proposed ALT is still able to boost their performance on Computers by nearly

18% significantly. Moreover, for each backbone GNN, the average gain of applying the
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(a) Chameleon (b) Film (c) Cora (d) Citeseer

Figure 4.3: Training losses of APPNP (with/without ALT).

Table 4.4: Performance comparison (mean±std accuracy (%)) on homophilic graphs. The
last column indicates the average performance boosting for a specific backbone GNN over
all the datasets.

Backbone ALT? Cora Citeseer Pubmed DBLP Computers Photos CS Physics Avg. ∆

GCN
No 81.1±0.3 71.2±0.7 79.0±0.4 83.7±0.1 66.2±1.0 84.1±0.5 88.2±0.2 95.3±0.1

+3.4
Yes 81.2±0.5 71.4±0.4 79.1±0.9 83.7±0.4 84.1±0.1 88.9±0.6 92.3±0.4 95.6±0.9

SGC
No 80.8±0.1 71.0±0.2 79.5±0.5 83.8±0.0 69.1±0.4 86.2±0.4 89.7±0.1 95.3±0.0

+2.6
Yes 80.7±0.4 71.2±0.6 79.5±0.7 83.7±0.0 84.0±0.4 88.8±1.4 92.5±0.3 96.0±0.0

APPNP
No 82.1±0.1 71.8±0.1 79.8±0.5 83.8±0.2 66.7±1.1 83.4±1.2 87.8±0.1 94.9±0.0

+4.0
Yes 82.7±0.3 72.1±0.3 79.3±0.2 84.6±0.1 84.6±0.4 88.7±0.3 93.8±0.1 96.4±0.1

GPRGNN
No 78.6±1.5 68.9±0.9 77.6±0.9 84.4±0.2 85.0±0.5 92.4±0.2 92.3±0.1 95.5±0.4

+1.6
Yes 83.0±0.4 71.0±0.4 80.3±0.2 85.1±0.2 85.8±0.2 92.9±0.2 93.4±0.2 96.2±0.1

FAGCN
No 79.0±0.6 72.1±0.5 78.0±1.1 81.1±1.1 74.8±3.4 91.2±0.3 93.0±1.4 95.7±0.3

+1.8
Yes 79.0±0.5 71.7±0.5 78.3±1.2 82.5±0.3 86.0±0.8 91.5±0.4 93.6±1.1 96.3±0.2

H2GCN
No 78.9±0.6 70.3±1.0 78.2±1.0 82.4±0.0 75.8±0.3 89.7±0.2 92.5±0.2 96.2±0.1

+2.0
Yes 79.0±0.4 70.9±0.8 78.0±1.3 82.0±0.4 87.0±0.3 92.0±0.6 94.1±0.2 96.6±0.1

Table 4.5: Performance comparison (mean±std accuracy (%)) with the state-of-the-art meth-
ods. The best and the second best are bold and underlined, respectively. Results marked
“*” are reported from [181] with the same dataset split.

Dataset *ACM-GCN BernNet *LINKX *ACMII-GCN++ *GloGNN++ ALT ALT+

Cornell 85.1±6.1 81.1±8.4 77.8±5.8 86.5±6.7 86.0±5.1 86.8±4.3 90.4±4.5
Wisconsin 88.4±3.2 87.3±4.6 75.5±5.7 88.4±3.7 88.0±3.2 88.9±2.5 88.6±3.3
Texas 87.8±4.4 82.6±4.9 74.6±8.4 88.4±3.4 84.1±4.9 88.7±3.3 89.5±2.2
Film 36.6±0.8 34.2±1.5 36.1±1.6 37.1±1.3 37.7±1.4 37.6±0.7 37.3±1.2

Chameleon 69.1±1.9 45.4±1.9 68.4±1.4 74.8±2.2 71.2±1.8 66.7±2.0 77.0±1.9
Squirrel 55.2±1.5 33.1±1.4 61.8±1.8 67.4±2.2 57.9±1.8 54.3±1.2 69.4±1.5
Cora 87.9±1.0 87.6±0.6 84.6±1.1 88.3±1.0 88.3±1.1 88.1±0.5 89.6±1.3

Citeseer 77.3±1.7 76.1±0.3 73.2±1.0 77.1±1.6 77.2±1.8 77.6±1.5 79.9±1.2
PubMed 90.0±0.5 86.2±0.3 87.9±0.8 89.7±0.5 89.2±0.4 89.9±0.6 90.3±0.5

proposed ALT over all 8 homophilic graphs is always positive. Thus, we conclude that ALT

can retain or even boost the performance of given backbone GNNs on homophilic graphs.

As we mentioned in Section 4.1.3, the model equipped with ALT will have more model

parameters compared with a vanilla backbone GNN classifier. Thus, we further study the
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Table 4.6: Ablation study with different backbone models.

(a) Backbone model: GCN

Backbone Version Chameleon Squirrel Film Computers Photos CS

GCN

None 58.4±1.1 35.4±0.6 28.1±0.3 66.2±1.0 84.1±0.5 88.2±0.2
Global 61.3±1.0 44.1±0.3 30.6±0.1 72.7±0.8 85.2±1.4 89.9±0.3

Local-low 63.3±0.8 48.8±1.2 32.5±0.2 81.1±0.3 86.5±0.9 91.0±0.2
Local-concat 47.1±2.6 31.3±1.4 34.4±1.1 76.4±5.8 85.3±3.7 87.1±1.2

Local 65.8±0.9 52.4±0.8 35.5±1.2 84.1±0.1 88.9±0.6 92.3±0.4

(b) Backbone model: SGC

Backbone Version Chameleon Squirrel Film Computers Photos CS

SGC

None 58.4±0.6 37.1±0.4 27.3±0.1 69.1±0.4 86.2±0.4 89.7±0.1
Global 59.7±0.8 41.6±0.2 31.4±0.5 71.6±0.4 86.6±0.7 91.1±0.2

Local-low 61.6±2.3 44.6±0.3 33.3±0.2 79.3±0.6 87.4±0.6 91.5±0.1
Local-concat 44.0±5.9 36.4±1.7 34.0±1.9 79.6±2.1 88.1±3.0 90.2±0.7

Local 65.6±2.0 53.2±0.6 34.9±0.8 84.0±0.4 88.8±1.4 92.5±0.3

(c) Backbone model: APPNP

Backbone Version Chameleon Squirrel Film Computers Photos CS

APPNP

None 48.0±1.2 33.8±0.4 28.7±0.3 66.7±1.1 83.4±1.2 87.8±0.1
Global 50.8±0.4 36.1±0.7 31.7±0.2 71.5±0.8 85.3±0.9 90.9±0.4

Local-low 58.8±1.1 48.2±0.8 33.2±1.0 80.1±0.9 87.0±0.6 92.7±0.2
Local-concat 51.9±0.7 40.0±1.0 33.6±0.7 75.5±2.3 81.8±2.5 89.9±0.4

Local 65.4±1.1 53.2±0.9 34.0±0.3 84.6±0.4 88.7±0.3 93.8±0.1

training stability of a backbone classifier when working with ALT. To be specific, we select 2

homophilic datasets Cora and Citeseer, and 2 heterophilic datasets Chameleon and Film. We

select the backbone classifier as APPNP. The training loss (negative log-likelihood loss) with

respect to the number of epochs is reported in Figure 4.3a-4.3d from which we clearly observe

that (1) the APPNP’s training stability is not significantly affected after equipping ALT,

(2) ALT-APPNP can fit the homophilic graphs as good as vanilla APPNP and, importantly,

it can fit the heterophilic graphs much better (with lower training loss) than the vanilla

APPNP. Observation (2) aligns well with our performance comparison reported in Table 4.1

and Table 4.4.

Effectiveness of ALT. In this section, we show that our proposed approach, ALT, can

also be a strong competitor against state-of-the-art methods. We select APPNP [23] as

our backbone method, which is not designed for graphs with high heterophily. Recent ef-

forts to handle graphs with arbitrary heterophily are selected, which include LINKX [180],

BernNet [182], ACM-GCN [181] and GloGNN [183]. For a fair comparison, we adopt the
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(a) GCN (b) GPRGNN

Figure 4.4: Hyperparameter sensitivity of ALT with backbone GNN as (a) GCN and (b)
GPRGNN.

same dataset split as the recent work ACM-GCN [181]. The performance comparison is in

Table 4.5. We observe that ALT-APPNP exhibits comparable performance to state-of-the-

art methods on most datasets (except Chameleon and Squirrel). We notice that methods

LINKX, ACM-GCN++, and GloGNN++ all use a technique to encode the adjacency matrix

by an MLP (i.e., MLP(A)) as a supplement to node embeddings. Since this technique is inde-

pendent of the model design, once it is applied to our framework, the model ALT-APPNP+

achieves very strong performance on the Chameleon and Squirrel datasets. In conclusion,

our proposed ALT can be comparable to, or stronger than, state-of-the-art methods, even

when working with a fixed-filter backbone GNN, such as APPNP.

Ablation Study. We present an ablation study on datasets: Chameleon [179], Squir-

rel [179], Film [172], Computers [178], Photos [178], and CS [178]. Specifically, we have

the following ablated versions: (1) ALT-local, (2) ALT-local with a low-pass filter aug-

menter (i.e., change Eq.4.12b as a two-layer SGC) which is named as ALT-local-low, (3)

ALT-local-concat whose aggregation step (Eq. 4.10d) is instantiated by ‘concatenation’ fol-

lowed by an MLP, (4) ALT-global, and (5) vanilla backbone GNNs without our methods

(named as None). Results are presented in Table 4.6, from which we observe that (1) the

ALT-local has consistent advantages over all ablated versions, (2) the variant ALT-local-

concat’s performance is highly unstable which may be due to its large number of parameters

in aggregating representations.

Hyperparameter Sensitivity Study. We study the sensitivity of ALT-local regarding

the amplitude of the augmenter GNN (i.e, ϵ from Eq. 4.12b). We select GCN [20] and

GPRGNN [166] as backbone GNNs and conduct experiments over Cora [164], Citeseer [164],
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(a) Chameleon,
APPNP w/o ALT

(b) Chameleon,
APPNP w/ ALT

(c) Computers,
APPNP w/o ALT

(d) Computers,
APPNP w/ ALT

(e) Chameleon,
FAGCN w/o ALT

(f) Chameleon,
FAGCN w/ ALT

(g) Computers,
FAGCN w/o ALT

(h) Computers,
FAGCN w/ ALT

Figure 4.5: Visualization of backbone models with/without ALT on datasets Chameleon
and Computers.

Chameleon [179], Squirrel [179] datasets. Results are presented in Figure 4.4 from which we

observe that the model performance is stable for the selection of ϵ over four datasets and

both backbone GNNs (i.e., GCN and GPRGNN).

Visualization. As a supplementary study of the model effectiveness, we visualize the

node representations from the backbone models APPNP and FAGCN with/without our

proposed ALT. To be specific, we use t-SNE [118] to map the representations of test nodes

into two-dimensional vectors for visualization. We select a heterophilic graph Chameleon

and a homophilic graph Computers. Figure 4.5a-4.5h show that after equipping with our

proposed ALT (1) clusters of nodes with the same class (i.e., color in our visualization) are

more cohesive in the embedding space and (2) backbone GNN’s node representations from

different classes are more discriminative.

Training Time Study. An analysis of the model complexity is provided at the end of

subsection 5.2.3. Also, ALT does not significantly increase the training epochs, which is

illustrated in Figure 4.3. In this subsection, we study the training time of a backbone GNN

with and without being plugged into ALT. We select 4 datasets (Cora, Citeseer, Chameleon,

Film) and 4 backbone GNNs (GCN, APPNP, GPRGNN, FAGCN) to show the updating

time comparison per iteration in Table 4.7, which shows that ALT will increase the time

of every training iteration. That is because, from Figure 4.2, we know the output of the
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Table 4.7: Updating time (seconds per iteration) with and without ALT.

Backbone ALT? Cora Citeseer Chameleon Film

GCN
No 0.0063 0.0034 0.0032 0.0029
Yes 0.0107 0.0096 0.0094 0.0093

APPNP
No 0.0035 0.0042 0.0034 0.0031
Yes 0.0090 0.0103 0.0089 0.0092

GPRGNN
No 0.0053 0.0045 0.0054 0.0048
Yes 0.0121 0.0120 0.0141 0.0136

FAGCN
No 0.0044 0.0040 0.0045 0.0042
Yes 0.0109 0.0105 0.0124 0.0115

augmenter GNN is the input of the backbone dual GNNs. Thus, according to the chain rule,

the update of the augmenter GNN requires a more complex ‘gradient computational graph’

(and more computations) compared with the update of a vanilla backbone GNN.

4.1.5 Additional Analysis of ALT-global from the Graph Diffusion Equation (GDE)
perspective

As we claimed in Lemma 4.1, our proposed ALT-global can be an adaptive filter even

if the given backbone GNNs only have fixed filters. Here, we prove this from the Graph

Diffusion Equation (GDE) [175] perspective. Our proof will focus on the case where the

diffusion matrix is the normalized adjacency matrix Ã = D− 1
2AD− 1

2 whose convolution

kernel is fixed. Other cases can be proved in similar ways.

Given graph signals H, its diffusion process can be presented as H(t+1) = ÃH(t). Thus,

we have

H(t+1) −H(t) =
H(t+1) −H(t)

(t+ 1)− t
= ÃH(t) −H(t). (4.14a)

In the GNN case, t > 0 denotes the GNN depth and in the GDE context, it denotes the

diffusion time. Thus, if we set the time interval as ∆t, the graph diffusion dynamics can be

presented as follows,

H(t+1) −H(t)

∆t
= ÃH(t) −H(t),

dH(t)

dt
= −LH(t), (4.15a)

where L = I −D− 1
2AD− 1

2 is the normalized Laplacian matrix. As ALT-global re-weights
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all the edges into wÃ and (1− w)Ã, we have

dH
(t)
1

dt
= wÃH

(t)
1 −H

(t)
1 = (−wL− (1− w)I)H(t)

1 , (4.16a)

dH
(t)
2

dt
= (1− w)ÃH

(t)
2 −H

(t)
2 = (−(1− w)L− wI)H(t)

2 , (4.16b)

Recap that the prediction matrix of ALT-global is by combining signals from dual backbone

GNNs and an offset MLP as Z = softmax(H1 −H2 + ηHoffset). We keep the assumption

that the dual backbone GNNs are both GA-MLPs [174], which share parameters with our

offset MLP. Thus, we have H
(0)
1 = H

(0)
2 = Hoffset = H = MLP(X)

As we are analyzing its diffusion dynamics, there is no interaction between any two columns

of the feature matrix H
(t)
1 (and H

(t)
2 ). Hence, for brevity, we only show analysis of a single

feature h
(t)
1 = H

(t)
1 [:,m], h

(t)
2 = H

(t)
2 [:,m], h = hoffset = Hoffset[:,m], z(t) = Z(t)[:,m], ∀m ∈

{1, . . . , n}. The dual GNNs’ GDEs can be presented as follows,

dh
(t)
1

dt
= (−wL− (1− w)I)h(t)

1 , (4.17a)

dh
(t)
2

dt
= (−(1− w)L− wI)h(t)

2 , (4.17b)

Proposition 4.4. The solutions of Eq. 4.17a and Eq. 4.17b can be presented as h
(t)
1 =∑n

i=0

(
a
(0)
i e−(wλi+(1−w))t

)
ui and h

(t)
2 =

∑n
i=0

(
a
(0)
i e−((1−w)λi+w)t

)
ui, where ui and λi refers

to the i-th eigenvector and eigenvalue of L; initial state a
(0)
i is determined by h

(0)
1 = h

(0)
2 =∑

i a
(0)
i ui.

Proof. Here we prove the solution of Eq. 4.17a and for Eq. 4.17b its solution can be obtained

in a similar way. For Eq. 4.17a, by decomposing the graph signal with the eigenvectors ({ui})
of the normalized Laplacian L we have:

h
(t)
1 =

∑
i

a
(t)
i ui. (4.18)

As only h and ai are the functions of t, based on the fact that Lui = λiui and Iui = ui

we have: ∑
i

(
da

(t)
i

dt
+ wλia

(t)
i + (1− w)a(t)i

)
ui = 0. (4.19)

As all the eigenvectors are orthogonal with each other, by multiplying both sides of the
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above equation with u⊤
i we have(

da
(t)
i

dt
+ wλia

(t)
i + (1− w)a(t)i

)
ui = 0. (4.20)

da
(t)
i

dt
+ wλia

(t)
i + (1− w)a(t)i = 0. (4.21)

Hence, the graph signal h
(t)
1 can be represented as

h
(t)
1 =

n∑
i=0

(
a
(0)
i e−(wλi+(1−w))t

)
ui. (4.22a)

Similarly, the graph signal h
(t)
2 can be presented as

h
(t)
2 =

n∑
i=0

(
a
(0)
i e−((1−w)λi+w)t

)
ui. (4.23a)

QED.

Thus, the aggregated signal can be presented as

z(t) = h
(t)
1 − h

(t)
2 + ηhoffset, (4.24a)

=
n∑
i=0

a
(0)
i

(
e−(wλi+(1−w))t − e−((1−w)λi+w)t + η

)
ui, (4.24b)

where we use hoffset = h(0) =
∑n

i=1 a
(0)
i ui.

According to the graph signal processing [169], ui denotes the graph signal with λi fre-

quency. Hence, the λi-frequency signal amplitude is denoted as

a
(0)
i

(
e−(wλi+(1−w))t − e−((1−w)λi+w)t + η

)
after filtered by ALT-global. We know the signal

before filtering (i.e., diffusion) is

h(0) = h
(0)
1 = h

(0)
2 = h

(0)
offset =

n∑
i=0

a
(0)
i ui, (4.25)

and the amplitude of the the λi-frequency signal before filtering is a0i . Hence, the filter
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response to λi frequency is

Φ(λi) =
a
(0)
i

(
e−(wλi+(1−w))t − e−((1−w)λi+w)t + η

)
a
(0)
i

(4.26a)

=e−(wλi+(1−w))t − e−((1−w)λi+w)t + η (4.26b)

It is clear when w > 0,, Φ(λi) is a monotonically decreasing function and when w < 0, Φ(λi)

is a monotonically increasing function. With appropriate η and different w, ALT-global can

be instantiated as either a low-pass filter or a high-pass filter.

4.2 DISCRETE-STATE CONTINUOUS-TIME DIFFUSION FOR GRAPH
GENERATION

4.2.1 Introduction

Figure 4.6: A taxonomy of graph diffusion models.

Graph generation has been studied for a long time with broad applications, based on

either the one-shot (i.e., one-step) [184, 185, 186, 187, 188, 189] or auto-regressive gener-

ation paradigm [190, 191, 192, 193]. The former generates all the graph components at

once and the latter does that sequentially. A recent trend of applying diffusion generative

models [194, 195, 196] to graph generation tasks attracts increasing attention because of its

excellent performance and solid theoretical foundation. In this paper, we follow the one-shot

generation paradigm, the same as most graph diffusion generative models.

Some earlier attempts at graph diffusion models treat the graph data in a continuous
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state space by viewing the graph topology and features as continuous variables [186]. Such

a formulation departs from the discrete nature of graph-structured data; e.g., topological

sparsity is lost, and the discretization in the generation process requires extra hyperparam-

eters. DiGress [197] is one of the early efforts applying discrete-state diffusion models to

graph generation tasks and is the current state-of-the-art graph diffusion generative model.

However, DiGress is defined in the discrete time space whose generation is inflexible. This

is because the number of sampling steps must match the number of forward diffusion steps,

which is a fixed hyperparameter after the model finishes training. A unique advantage of

the continuous-time diffusion models [189, 196] lies in their flexible sampling process, and

their simulation complexity is proportional to the number of sampling steps, determined by

the step size of various numerical approaches (e.g., τ -leaping [198, 199, 200]) and decoupled

from the models’ training. Thus, a discrete-state continuous-time diffusion model is highly

desirable for graph generation tasks.

Driven by the recent advance of continuous-time Markov Chain (CTMC)-based diffusion

generative model [199], we incorporate the ideas of CTMC into the corruption and denoising

of graph data and propose the first discrete-state continuous-time graph diffusion generative

model. It shares the same advantages as DiGress by preserving the discrete nature of graph

data, while overcoming the drawback of the non-adjustable sampling process in DiGress.

This Discrete-state Continuous-time graph diffusion model is named DisCo.

DisCo bears several desirable properties and advantages. First, despite its simplicity,

the training objective has a rigorously proved connection to the sampling error. Second,

its formulation includes a parametric graph-to-graph mapping, referred to as the backbone

model, whose input-output architecture is shared between DisCo and DiGress. Therefore,

the graph transformer (GT)-based backbone model [201] from DiGress can be seamlessly

plugged into DisCo. Third, a concise message-passing neural network backbone model is

explored with DisCo, which is simpler than the GT backbone and has decent empirical

performance. Last but not least, our analyses show that the forward and reverse diffusion

process inDisCo can retain the permutation-equivariant/invariant properties for its training

loss and sampling distribution, both of which are critical and practical inductive biases on

graph data.

Comprehensive experiments on plain and molecule graphs show that DisCo can obtain

competitive or superior performance against state-of-the-art graph generative models and

provide additional sampling flexibility.
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4.2.2 Preliminaries

Discrete-State Continuous-Time Diffusion Models. A D-dimensional discrete state

space is represented as X = {1, . . . , C}D. A continuous-time Markov Chain (CTMC){
xt = [x1t , · · ·xDt ]

}
t∈[0,T ] is characterized by its (time-dependent) rate matrix Rt ∈ R|X |×|X |.

Here xt is the state at the time step t. The transition probability qt|s between from time s

to t satisfies the Kolmogorov forward equation, for s < t,

d

dt
qt|s(xt|xs) =

∑
ξ∈X

qt|s(ξ|xs)Rt(ξ,xt), (4.27)

The marginal distribution can be represented as qt(xt) =
∑

x0∈X qt|0(xt|x0)πdata(x0)

where πdata(x0) is the data distribution. If the CTMC is defined in time interval [0, T ] and

if the rate matrix Rt is well-designed, the final distribution qT (xT ) can be close to a tractable

reference distribution πref(xT ), e.g., uniform distribution. We notate the reverse stochastic

process as x̃t = xT−t; a well-known fact (e.g., Section 5.9 in [202]) is that the reverse process

{x̃t}t∈[0,T ] is also a CTMC, characterized by the reverse rate matrix: R̃t(x,y) =
q(y)
q(x)

Rt(y,x).

The goal of the CTMC-based diffusion models is an accurate estimation of the reverse

rate matrix R̃t so that new data can be generated by sampling the reference distribution

πref and then simulating the reverse CTMC [198, 203, 204, 205]. However, the complexity

of the rate matrix is prohibitively high because there are CD possible states. A reasonable

simplification is to factorize the process over dimensions [197, 199, 200, 206]. Specifically, the

forward process is factorized as qt|s(xt|xs) =
∏D

d=1 qt|s
(
xdt |xds

)
, for s < t. Then, the forward

diffusion of each dimension is independent and is governed by dimension-specific forward rate

matrices
{
Rd
t

}D
d=1

. With such a factorization, the goal is to estimate the dimension-specific

reverse rate matrices
{
R̃d
t

}D
d=1

.

The dimension-specific reverse rate is represented as

R̃d
t (x

d, yd) =
∑

xd0
Rd
t (y

d, xd)
qt|0(y

d|xd0)
qt|0(xd|xd0)

q0|t
(
xd0|x

)
. Campbell et al. [199] estimate q0|t

(
xd0|x

)
via a neural network pθ such that pθ(x

d
0|x, t) ≈ q0|t

(
xd0|x

)
; Sun et al. [200] propose another

singleton conditional distribution-based objective pθ(y
d|x\d,t)

pθ(xd|x\d,t)
≈ q(yd|x\d)

q(xd|x\d)
whose rationale is

Brook’s Lemma [207, 208].

Graph Generation and Notations. We study the graphs with categorical node and

edge attributes. A graph with n nodes is represented by its edge type matrix and node type

vector: G = (E,F), where E = (e(i,j))i,j∈N+
≤n
∈ {1, . . . , a+1}n×n, F = (f i)i∈N+

≤n
∈ {1, . . . , b}n,

a and b are the numbers of node and edge types, respectively. Notably, the absence of an

edge is viewed as a special edge type, so there are (a+ 1) edge types in total. The problem
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Figure 4.7: An overview of DisCo. A transition can happen at any time in [0, T ].

we study is graph generation where N graphs {Gi}i∈N+
≤N

from an inaccessible graph data

distribution G are given and we aim to generate M graphs {Gi}i∈N+
≤M

from G.

4.2.3 Method

Factorized Discrete Graph Diffusion Process. The number of possible states of an

n-node graph is (a + 1)n
2 × bn which is intractably large. Thus, we follow existing discrete

models [197, 199, 200, 206] and formulate the forward processes on every node/edge to be

independent. Mathematically, the forward diffusion process for s < t is factorized as

qt|s (Gt|Gs) =
n∏

i,j=1

qt|s

(
e
(i,j)
t |e(i,j)s

) n∏
i=1

qt|s
(
f it |f is

)
(4.28)

where the edge type transition probabilities
{
qt|s

(
e
(i,j)
t |e

(i,j)
s

)}
i,j∈N+

≤n

and node type transi-

tion probabilities {qt|s(f it |f is)}i∈N+
≤n

are characterized by their forward rate matrices

{R(i,j)
t }i,j∈N+

≤n
and {Ri

t}i∈N+
≤n
, respectively. The forward processes, i.e., the forward rate ma-

trices in our context, are predefined, which will be introduced below. Given the factorization

of forward transition probability in Eq. (4.28), a question is raised: what is the corresponding

factorization of the forward rate matrix (Rt) and the reverse rate matrix (R̃t)? Remark 4.2.3

shows such a factorization.

Remark. (Factorization of rate matrices, extended from Proposition 3 of [199]) Given the
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factorized forward process Eq. (4.28), the overall rate matrices are factorized as

Rt(Ḡ,G) =
∑
i

Ait +
∑
i,j

B
(i,j)
t (4.29)

R̃t(G, Ḡ) =
∑
i

Ait
∑
f i0

qt|0
(
f̄ i|f i0

)
qt|0 (f i|f i0)

q0|t
(
f i0|G

)
+
∑
i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0

(
ē(i,j)|e(i,j)0

)
qt|0

(
e(i,j)|e(i,j)0

)q0|t (e(i,j)0 |G
)

(4.30)

whereAit = Ri
t

(
f̄ i, f i

)
δḠ\f̄ i,G\f i , B

(i,j)
t = R

(i,j)
t

(
ē(i,j), e(i,j)

)
δḠ\ē(i,j),G\e(i,j) , the operator δḠ\f̄ i,G\f i

(or δḠ\ē(i,j),G\e(i,j)) checks whether two graphs Ḡ and G are exactly the same except for node

i (or the edge between nodes i and j).

Note that this factorization itself is not our contribution but a necessary part of our

framework, so we mention it here for completeness. The introduction of its full derivation is

postponed. Next, we detail the design of forward rate matrices.

Forward Process. A proper choice of the forward rate matrices
{
R

(i,j)
t

}
i,j∈N+

≤n

and

{Ri
t}i∈N+

≤n
is important because (1) the probability distributions of node and edge types,

{q(f it )}i∈N+
≤n

and
{
q(e

(i,j)
t )

}
i,j∈N+

≤n

, should converge to their reference distributions within

[0, T ] and (2) the reference distributions should be easy to sample (e.g., uniform distribution).

We follow [199] to formulate R
(i,j)
t = β(t)R

(i,j)
e , ∀i, j and Ri

t = β(t)Ri
f , ∀i, where β(t)

is a corruption schedule, {R(i,j)
e } and {Ri

f} are the base rate matrices. For brevity, we

set all the nodes/edges to share a common node/edge rate matrix, i.e., R
(i,j)
e = Re and

Ri
f = Rf , ∀i, j. Then, the forward transition probability for all the nodes and edges are

qt|0(ft = v|f0 = u) = (e
∫ t
0 β(s)Rfds)uv and qt|0(et = v|e0 = u) = (e

∫ t
0 β(s)Reds)uv, respectively.

We omit the superscript i (or (i, j)) because the transition probability is shared by all the

nodes (or edges). The detailed derivation of the above analytic forward transition probability

is provided in Section 4.2.8.

For categorical data, a reasonable reference distribution is a uniform distribution, i.e.,

πf = 1
b
for nodes and πe =

1
a+1

for edges. In addition, inspired by [197], we find that node

and edge marginal distributions mf and me are good choices as the reference distributions.

Concretely, an empirical estimation of mf and me is to count the number of node/edge

types and normalize them. The following proposition demonstrates how to design the rate

matrices to guide the forward process in converging to uniform and marginal distributions.
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Proposition 4.5. The forward processes for nodes and edges converge to uniform distribu-

tions if Rf = 11⊤ − bI and Re = 11⊤ − (a + 1)I; they converge to marginal distributions

mf and me if Rf = 1m⊤
f − I and Re = 1m⊤

e − I. 1 is an all-one vector and I is an identity

matrix.

Regarding the selection of β(t), we follow [195, 196, 199] and set β(t) = αγt log(γ) for a

smooth change of the rate matrix. α and γ are hyperparameters.

Parameterization and Optimization Objective. Next, we introduce the estimation of

the reverse process from its motivation. The reverse process is essentially determined by the

reverse rate matrix R̃t in Eq. (4.30), whose computation needs q0|t(f
i
0|G) and q0|t(e

(i,j)
0 |G),

∀i, j; their exact estimation is expensive because according to Bayes’ rule, pt(G) is needed,
whose computation needs to enumerate all the given graphs: pt(G) =

∑
G0
qt|0(G|G0)πdata(G0).

Thus, we propose parameterizing the reverse transition probabilities via a neural network

θ whose specific architecture will be introduced below. The terms
{
q0|t(f

i
0|G)

}
i∈N+

≤n

and{
q0|t(e

(i,j)
0 |G)

}
i,j∈N+

≤n

in Eq. (4.30) are replaced with the parameterized
{
pθ0|t(f

i|G)
}
i∈N+

≤n

and
{
pθ0|t(e

(i,j)|G)
}
i,j∈N+

≤n

. Thus, a parameterized reverse rate matrix R̃θ,t

(
G, Ḡ

)
is rep-

resented as R̃θ,t

(
G, Ḡ

)
=
∑

i R̃
i
θ,t

(
f i, f̄ i

)
+
∑

i,j R̃
(i,j)
θ,t

(
e(i,j), ē(i,j)

)
where R̃i

θ,t

(
f i, f̄ i

)
=

Ait
∑

f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
pθ0|t(f

i
0|G), R̃

(i,j)
θ,t

(
e(i,j), ē(i,j)

)
= B

(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e
(i,j)|e(i,j)0 )

pθ0|t

(
e
(i,j)
0 |G

)
, and the

remaining notations are the same as Eq. (4.30). Note that all the terms {pθ0|t(f i|G)}i∈N+
≤n

and {pθ0|t(e(i,j)|G)}i,j∈N+
≤n

can be viewed together as a graph-to-graph mapping θ : G 7→ G,

whose input is the noisy graph Gt and its output is the predicted clean graph probabilities,

concretely, the node/edge type probabilities of all the nodes and edges.

Intuitively, the discrepancy between the groundtruth R̃t (from Eq. (4.30)) and the para-

metric R̃θ,t should be small. Theorem 4.1 establishes a cross-entropy (CE)-based upper

bound of such a discrepancy, where the estimated probability vectors (sum is 1) are notated

as f̂ i0 =
[
pθ0|t(f

i = 1|Gt), . . . , pθ0|t(f i = b|Gt)
]⊤
∈ [0, 1]b and

ê
(i,j)
0 =

[
pθ0|t(e

(i,j) = 1|Gt), . . . , pθ0|t(e(i,j) = a+ 1|Gt)
]⊤
∈ [0, 1]a+1.

Theorem 4.1 (Approximation error). for G ̸= Ḡ∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣2 ≤ Ct + Cnode

t EG0qt|0(G|G0)
∑
i

LCE
(
One-Hot(f i0), f̂

i
0

)
+ Cedge

t EG0qt|0(G|G0)
∑
i,j

LCE
(
One-Hot(e

(i,j)
0 ), ê

(i,j)
0

)
(4.31)
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where Ct, C
node
t , and Cedge

t are constants independent on θ but dependent on t, G, and Ḡ;
One-Hot transforms f i0 and e

(i,j)
0 into one-hot vectors.

The bound in Theorem 4.1 is tight, i.e., the right-hand side of Eq. (4.31) is 0, whenever

f̂ i0 = q0|t(f
i
0|Gt),∀i and ê

(i,j)
0 = q0|t(e

(i,j)
0 |Gt),∀i, j. Guided by Theorem 4.1, we (1) take

expectation of t by sampling t from a uniform distribution t ∼ U(0,T ) and (2) simplify the

right-hand side of Eq. (4.31) by using the unweighted CE loss as our training objective:

min
θ

TEtEG0Eqt|0(Gt|G0)

[∑
i

LCE
(
One-Hot

(
f i0
)
, f̂ i0

)
+
∑
i,j

LCE
(
One-Hot

(
e
(i,j)
0

)
, ê

(i,j)
0

)]
(4.32)

A step-by-step training algorithm is in Algorithm 4.2. Note that the above CE loss has been

used in some diffusion models (e.g., [199, 206]) but lacks a good motivation, especially in the

continuous-time setting. We motivate it based on the rate matrix discrepancy, as a unique

contribution of this paper.

Sampling Reverse Process. Given the parametric reverse rate matrix R̃θ,t(G, Ḡ), the
graph generation process can be implemented by two steps: (1) sampling the reference

distribution πref (i.e., πf for nodes and πe for edges) and (2) numerically simulating the

CTMC from time T to 0. The exact simulation of a CTMC has been studied for a long

time, e.g., [203, 204, 205]. However, their simulation strategies only allow one transition

(e.g., one edge/node type change) per step, which is highly inefficient for graphs as the

number of nodes and edges is typically large; once a(n) node/edge is updated, R̃θ,t requires

recomputation. A practical approximation is to assume R̃θ,t is fixed during a time interval

[t−τ, t], i.e., delaying the happening of transitions in [t−τ, t] and triggering them all together

at the time t− τ ; this strategy is also known as τ -leaping [198, 199, 200], and DisCo adopts

it.

We elaborate on τ -leaping for transitions of node types; the transitions of edge types are

similar. The rate matrix of the i-th node is fixed as

R̃i
θ,t

(
f i, f̄ i

)
= Ri

t

(
f̄ i, f i

)∑
f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
pθ0|t(f

i|Gt), during [t−τ, t]. According to the definition
of rate matrix, in [t− τ, t], the number of transitions from f i to f̄ i, namely Jf i,f̄ i , follows the

Poisson distribution, i.e., Jf i,f̄ i ∼ Poisson
(
τR̃i

θ,t

(
f i, f̄ i

))
. For categorical data (e.g., node

type), multiple transitions in [t − τ, t] are invalid and meaningless. In other words, for the

i-th node, if the total number of transitions
∑

f̄ i Jf i,f̄ i > 1, f i keeps unchanged in [t− τ, t];
otherwise, if

∑
f̄ i Jf i,f̄ i = 1 and Jf i,s = 1, i.e., there is exact 1 transition, f i jumps to s. A

step-by-step sampling algorithm (Algorithm 4.1) is provided in Section 4.2.10.
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Remark. The sampling error of τ -leaping is linear to Cerr [199], the approximation error

of the reverse rates:
∑

G≠Ḡ

∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣ ≤ Cerr. Interested readers are referred

to Theorem 1 from [199]. Our Theorem 4.1 shows the connection between our training loss

and Cerr, which further verifies the correctness of our training loss.

Model Instantiation. As mentioned above, the parametric backbone pθ0|t(G0|Gt) is a

graph-to-graph mapping whose input is the noisy graph Gt and its output is the predicted de-

noised graph G0. A wide range of neural network architectures exists. Notably, DiGress [197]

uses a graph Transformer (GT) as pθ0|t, a decent reference for our continuous-time frame-

work. We name our model with the GT backbone as DisCo-GT. The main advantage of

the GT is its long-range interaction thanks to the complete self-attention graph; however,

the architecture is very complex and includes multi-head self-attention modules, leading to

expensive computation.

Beyond GTs, in this paper, we posit that a regular message-passing neural network

(MPNN) [209] should be a promising choice for pθ0|t(G0|Gt). It is recognized that the MPNNs’

expressiveness might not be as good as GTs’ [210, 211], e.g., in terms of long-range interac-

tions. However, in our setting, the absence of an edge is viewed as a special type of edge, and

the whole graph is complete; therefore, such a limitation of MPNN is naturally mitigated,

which is verified by our empirical evaluations.

Concretely, an MPNN-based graph-to-graph mapping is presented as follows, and DisCo

with MPNN backbone is named DisCo-MPNN. Given a graph G = (E,F), where E ∈
{1, . . . , a, a + 1}n×n, F ∈ {1, . . . , b}n, we first transform both the matrix E and F into one-

hot embeddings EOH ∈ {0, 1}n×n×(a+1) and FOH ∈ {0, 1}n×b. Then, some auxiliary features

(e.g., the # of specific motifs) are extracted: Faux,yaux = Aux(EOH) to overcome the expres-

siveness limitation of MPNNs [212]. Here Faux and yaux are the node and global auxiliary

features, respectively. Note that a similar auxiliary feature engineering is also applied in

DiGress [197]. More details about the Aux can be found in Section 4.2.11. Then, three

multi-layer perceptrons (MLPs) are used to map node features FOH ⊕ Faux, edge features

EOH, and global features yaux into a common hidden space as Fhidden = MLP(FOH ⊕ Faux),

Ehidden = MLP(EOH), yhidden = MLP(yaux), where ⊕ is a concatenation operator. The following

formulas present the update of node embeddings (e.g., ri = F(i, :)), edge embedding (e.g.,

r(i,j) = E(i, j, :)), and global embedding y in an MPNN layer, where we omit the subscript
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hidden if it does not cause ambiguity:

ri ← FiLM

(
FiLM

(
ri, MLP

(
n∑
j=1

r(j,i)/n

))
,y

)
, (4.33)

r(i,j) ← FiLM
(
FiLM

(
r(i,j), ri ⊙ rj

)
,y
)
, (4.34)

y← y + PNA
(
{ri}ni=1

)
+ PNA

(
{r(i,j)}ni,j=1

)
. (4.35)

The edge embeddings are aggregated by mean pooling (i.e.,
∑n

j=1 r
(j,i)/n); the node pair

embeddings are passed to edges by Hadamard product (i.e., ri⊙ rj); edge/node embeddings

are merged to the global embedding y via the PNA module [213]; Some FiLM modules [214]

are used for the interaction between node/edge/global embeddings. More details about the

PNA and FiLM are in Section 4.2.11. In this paper, we name Eqs. (4.34) and (4.35) on all

nodes/edges together as an MPNN layer, F,E,y← MPNN(F,E,y). Stacking multiple MPNN

layers results in a larger model capacity. Finally, two readout MLPs are used to project the

node/edge embeddings into input dimensions, MLP(F) ∈ Rn×b and MLP(E) ∈ Rn×n×(a+1),

which are output after wrapped with softmax.

Both the proposed MPNN and the GT from DiGress [197] use the PNA and FiLM to merge

embeddings, but MPNN does not have multi-head self-attention layers, so the computation

overhead is lower.

Permutation Equivariance and Invariance. Reordering the nodes keeps the prop-

erty of a given graph, which is known as permutation invariance. In addition, for a given

function, if its input is permuted and its output is permuted accordingly, such a behav-

ior is known as permutation equivariance. In this subsection, we analyze permutation-

equivariance/invariance of the (1) diffusion framework (Lemmas 4.3, 4.4, and 4.5), (2) sam-

pling density (Theorem 4.2), and (3) training loss (Theorem 4.3).

Lemma 4.3 (Permutation-equivariant layer). The proposed MPNN layer (Eqs. (4.34) and

(4.35)) is permutation-equivariant.

The auxiliary features from the Aux are also permutation-equivariant (see Section 4.2.11).

Thus, the whole MPNN-based backbone pθ0|t is permutation-equivariant. Note that the GT-

based backbone from DiGress [197] is also permutation-equivariant, whose proof is omitted

as it is not our contribution. Next, we show the permutation invariance of the rate matrices.

Lemma 4.4 (Permutation-invariant rate matrices). The forward rate matrix of DisCo is

permutation-invariant if it is factorized as Eq. (4.29). The parametric reverse rate ma-

73



trix of DisCo (R̃θ,t) is permutation-invariant whenever the graph-to-graph backbone pθ0|t is

permutation-equivariant.

Lemma 4.5 (Permutation-invariant transition probability). For CTMC satisfying the Kol-

mogorov forward equation (Eq. (4.27)), if the rate matrix is permutation-invariant (i.e.,

Rt(xi,xj) = Rt(P(xi),P(xj)), the transition probability is permutation-invariant (i.e.,

qt|s(xt|xs) = qt|s(P(xt)|P(xs)), where P is a permutation.

Based on Lemmas 4.4 and 4.5, DisCo’s parametric reverse transition probability is

permutation-invariant. The next theorem shows the permutation-invariance of the sampling

probability.

Theorem 4.2 (Permutation-invariant sampling probability). If both the reference distribu-

tion πref and the reverse transition probability are permutation-invariant, the parametric

sampling distribution pθ0(G0) is permutation-invariant.

In addition, the next theorem shows the permutation invariance of the training loss.

Theorem 4.3 (Permutation-invariant training loss). The proposed training loss Eq. (4.32)

is invariant to any permutation of the input graph G0 if pθ0|t is permutation-equivariant.

4.2.4 Experiments: Plain Graph Generation

Datasets. Datasets SBM, Planar [187], and Community [190] are used. We follow the

settings of SPECTRE [187] and DiGress [197] to split the SBM, Planar [187], and Commu-

nity [190] datasets into 64/16/20% for training/validation/test sets.

Table 4.8: Dataset statistics.

Name # Graphs Split a b Avg. |E| Max |E| Avg. |F| Max |F|

SBM 200 128/32/40 1 1 1000.8 2258 104.0 187
Planar 200 128/32/40 1 1 355.7 362 64.0 64

Community 100 64/16/20 1 1 74.0 122 15.7 20
QM9 130831 97734/20042/13055 4 4 18.9 28 8.8 9

MOSES 1733214 1419512/156176/157526 4 8 46.3 62 21.6 27
GuacaMol 1398213 1118633/69926/209654 4 12 60.4 176 27.8 88

Metrics. The Maximum Mean Discrepancy (MMD) [190] measures the discrepancy

between two sets of distributions. The relative squared MMD [197] is defined as follows

score =
MMD2({G}gen||{G}test)
MMD2({G}train||{G}test)

, (4.36)
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where ({G}gen, ({G}train, and ({G}test are the sets of generated graphs, training graphs,

and test graphs, respectively. We report the above relative squared MMD for degree distri-

butions (Deg.), clustering coefficient distributions (Clus.), and average orbit counts (Orb.)

statistics (the number of occurrences of all substructures with 4 nodes). In addition, unique-

ness, novelty, and validity were chosen. Uniqueness reports the fraction of the generated

nonisomorphic graphs; Novelty reports the fraction of the generated graphs not isomorphic

with any graph from the training set; Validity checks the fraction of the generated graphs

following some specific rules. For the SBM dataset, we follow the validity check from [187],

whose core idea is to check whether real SBM graphs are statistically indistinguishable from

the generated graphs; for the Planar dataset, we check whether the generated graphs are

connected and are indeed planar graphs. Since the Community dataset lacks the Validity

metric, we only report the Uniqueness, Novelty, and Validity results for the SBM and Planar

datasets.

We report mean±std in 5 runs.

Baseline Methods. GraphRNN [190], GRAN [192], GG-GAN [215], MolGAN [216],

SPECTRE [187], EDP-GNN [186], GraphGDP [217], DiscDDPM [218], EDGE [219],

ConGress [197], DiGress [197] are chosen.

Results. Table 4.9 shows the effectiveness evaluation on SBD and Planar from which we

observe:

• DisCo-GT can obtain competitive performance against the SOTA, DiGress, which is

reasonable because both models share the graph Transformer backbone. Note that

DiGress’s performance in terms of Validity is not the statistics reported in the paper

but from their latest model checkpoint 3. In fact, we found it very hard for DiGress

and DisCo-GT to learn to generate valid SBM/Planar graphs. These two datasets

have only 200 graphs, but sometimes only after > 10, 000 epochs training, the Validity

percentage can be > 50%. Additionally, DisCo-GT provides extra flexibility during

sampling by adjusting the τ . This is important: our models can still trade-off between

the sampling efficiency and quality even after the model is trained and frozen.

• In general, DisCo-MPNN has competitive performance against DisCo-GT in terms

of Deg., Clus., and Orb. However, its performance is worse compared to DisCo-

GT in terms of Validity, which might be related to the different model expressiveness.

3https://github.com/cvignac/DiGress/blob/main/README.md
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Table 4.9: Performance (mean±std) on SBM and Planar datasets.

Dataset Model Deg.↓ Clus.↓ Orb.↓ Unique ↑ Novel ↑ Valid ↑

SBM

GraphRNN [190] 6.9 1.7 3.1 100.0 100.0 5.0
GRAN [192] 14.1 1.7 2.1 100.0 100.0 25.0

GG-GAN [215] 4.4 2.1 2.3 100.0 100.0 0.0
MolGAN [216] 29.4 3.5 2.8 95.0 100.0 10.0
SPECTRE [187] 1.9 1.6 1.6 100.0 100.0 52.5
ConGress [197] 34.1 3.1 4.5 0.0 0.0 0.0
DiGress [197] 1.6 1.5 1.7 100.0 100.0 67.5
DisCo-MPNN 1.8±0.2 0.8±0.1 2.7±0.4 100.0±0.0 100.0±0.0 41.9±2.2

DisCo-GT 0.8±0.2 0.8±0.4 2.0±0.5 100.0±0.0 100.0±0.0 66.2±1.4

Planar

GraphRNN [190] 24.5 9.0 2508.0 100.0 100.0 0.0
GRAN [192] 3.5 1.4 1.8 85.0 2.5 97.5

GG-GAN [215] 315.0 8.3 2062.6 100.0 100.0 0.0
MolGAN [216] 4.5 10.2 2346.0 25.0 100.0 0.0
SPECTRE [187] 2.5 2.5 2.4 100.0 100.0 25.0
ConGress [197] 23.8 8.8 2590.0 0.0 0.0 0.0
DiGress [197] 1.4 1.2 1.7 100.0 100.0 85.0
DisCo-MPNN 1.4±0.3 1.4±0.4 6.4±1.6 100.0±0.0 100.0±0.0 33.8±2.7

DisCo-GT 1.2±0.5 1.3±0.5 1.7±0.7 100.0±0.0 100.0±0.0 83.6±2.1

Studying the expressiveness of the graph-to-graph model would be an interesting future

direction, e.g., generating valid Planar graphs.

4.2.5 Experiments: Molecule Graph Generation

Datasets. The datasets QM9 [225], MOSES [226], and GuacaMol [227] are chosen. We

follow the split of QM9 from DiGress [197] and follow the split of MOSES [226] and Gua-

caMol [227] according to their benchmark settings. Their statistics are presented in Table 4.8.

Metrics. For QM9, Uniqueness, Novelty, and Validity are chosen as metrics. The first two

are the same as introduced above. The Validity is computed by building a molecule with

RdKit 4 and checking if we can obtain a valid SMILES string from it.

For MOSES, the chosen metrics include Uniqueness, Novelty, Validity, Filters, Frchet

ChemNet Distance (FCD), Similarity to a nearest neighbor (SNN), and Scaffold similarity

(Scaf), which is consistent with DiGress [197]. The official evaluation code 5 is used to report

the performance.

4https://www.rdkit.org/
5https://github.com/molecularsets/moses
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Table 4.10: Performance (mean±std%) on QM9 dataset. V., U., and N. mean Valid, Unique,
and Novel.

Model Valid ↑ V.U. ↑ V.U.N. ↑

CharacterVAE [220] 10.3 7.0 6.3
GrammarVAE[221] 60.2 5.6 4.5
GraphVAE [222] 55.7 42.0 26.1
GT-VAE [223] 74.6 16.8 15.8

Set2GraphVAE [188] 59.9 56.2 -
GG-GAN [215] 51.2 24.4 24.4
MolGAN [216] 98.1 10.2 9.6
SPECTRE [187] 87.3 31.2 29.1
GraphNVP [184] 83.1 82.4 -

GDSS [189] 95.7 94.3 -
EDGE [219] 99.1 99.1 -

ConGress [197] 98.9 95.7 38.3
DiGress [197] 99.0 95.2 31.8

GRAPHARM [224] 90.3 86.3 -
DisCo-MPNN 98.9±0.7 98.7±0.5 68.7±0.2

DisCo-GT 99.3±0.6 98.9±0.6 56.2±0.4

For GuacaMol, the chosen metrics include Uniqueness, Novelty, Validity, KL Divergence,

and Frehet ChemNet Distance (FCD), which is consistent with DiGress [197]. The official

evaluation code6 is used to report the performance.

We report mean±std in 5 runs except MOSES and GuacaMol, whose computations are

too expensive to repeat multiple times.

Baseline Methods. CharacterVAE [220], GrammarVAE [221], GraphVAE [222], GT-

VAE [223], Set2GraphVAE [188], GG-GAN [215], MolGAN [216], SPECTRE [187], Graph-

NVP [184], GDSS [189], EDGE [219], ConGress [197], DiGress [197], GRAPHARM [224],

VAE [228], JT-VAE [191], GraphINVENT [229], LSTM [230], NAGVAE [231], and

MCTS [232] are chosen.

Results. Table 4.10 shows the performance on QM9 dataset. Our observation is consistent

with the performance comparison on plain datasets: (1) DisCo-GT obtains slightly better

or at least competitive performance against DiGress due to the shared graph-to-graph back-

bone, but our framework offers extra flexibility in the sampling process; (2) DisCo-MPNN

obtains decent performance in terms of Validity, Uniqueness, and Novelty comparing with

6https://github.com/BenevolentAI/guacamol

77



Table 4.11: Performance on MOSES. VAE, JT-VAE, and GraphINVENT have hard-coded
rules to ensure high validity.

Model Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑

VAE [228] 97.7 98.8 69.5 99.7 0.57 0.58 5.9
JT-VAE [191] 100.0 100.0 99.9 97.8 1.00 0.53 10.0

GraphINVENT [229] 96.4 99.8 N/A 95.0 1.22 0.54 12.7
ConGress [197] 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DiGress [197] 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo-MPNN 83.9 100.0 98.8 87.3 1.63 0.48 13.5
DisCo-GT 88.3 100.0 97.7 95.6 1.44 0.50 15.1

Table 4.12: Performance on GuacaMol. LSTM, NAGVAE, and MCTS are tailored for
molecule datasets; ConGress, DiGress, and DisCo are general graph generation models.

Model Valid ↑ Unique ↑ Novel ↑ KL div ↑ FCD ↑

LSTM [230] 95.9 100.0 91.2 99.1 91.3
NAGVAE [231] 92.9 95.5 100.0 38.4 0.9
MCTS [232] 100.0 100.0 95.4 82.2 1.5

ConGress [197] 0.1 100.0 100.0 36.1 0.0
DiGress [197] 85.2 100.0 99.9 92.9 68.0
DisCo-MPNN 68.7 100.0 96.4 77.0 36.4
DisCo-GT 86.6 100.0 99.9 92.6 59.7

DisCo-GT.

Tables 4.11 and 4.12 show the performance on MOSES and GuacaMol, which further

verifies that (1) performance of DisCo-GT is on par with the SOTA general graph generative

models, DiGress, and (2)DisCo-MPNN has decent performance, but worse thanDisCo-GT

and DiGress.
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Table 4.13: Efficiency comparison in terms of number of parameters, forward and backprop-
agation time (seconds/iteration).

Backbone GT MPNN

# Parameters 14× 106 7× 106

Forward 0.065 0.022
Backprop. 0.034 0.018

Table 4.14: Ablation study (mean±std%) with GT backbone. V., U., and N. mean Valid,
Unique, and Novel.

Reference Dist. Steps Valid ↑ V.U. ↑ V.U.N. ↑

Marginal

500 99.3±0.6 98.9±0.6 56.2±0.4

100 98.7±0.5 98.5±0.4 58.8±0.4

30 97.9±1.2 97.6±1.1 59.2±0.8

10 95.3±1.9 94.8±1.6 62.1±0.9

5 93.0±1.7 92.4±1.3 64.9±1.1

1 76.1±2.3 73.9±1.6 62.9±1.8

Uniform

500 94.1±0.9 92.9±0.5 56.6±0.4

100 91.5±1.0 90.3±0.9 54.4±1.2

30 88.7±1.6 86.9±1.0 58.6±2.1

10 84.5±2.3 80.4±1.7 59.8±1.8

5 77.0±2.5 69.9±1.5 56.1±3.5

1 44.9±3.1 35.1±3.4 29.6±2.5

4.2.6 Additional Experiments

Efficiency Study. A major computation bottleneck is the graph-to-graph backbone pθ0|t,

which is GT or MPNN. We compare the number of parameters, the forward and back-

propagation time of GT and MPNN in Table 4.13. For a fair comparison, we set all the

hidden dimensions of GT and MPNN as 256 and the number of layers as 5. We use the

Community [190] dataset and set the batch size as 64. Table 4.13 shows that GT has a

larger capacity and more parameters at the expense of more expensive training.

Ablation Study. An ablation study on DisCo-GT for reference distributions (marginal

vs. uniform), and sampling steps (1 to 500) is presented in Table 4.14. The number of

sampling steps is round( 1
τ
) if T = 1. QM9 dataset is chosen. A similar ablation study on

DisCo-MPNN is in Table 4.16. We observe that, first, generally, the fewer sampling steps,

the lower the generation quality. In some cases (e.g., the marginal distribution), with the

sampling steps decreasing significantly (e.g., from 500 to 30), the performance degradation

79



Table 4.15: Generation performance (mean±std) on the Community dataset.

Model Deg.↓ Clus.↓ Orb.↓

GraphRNN [190] 4.0 1.7 4.0
GRAN [192] 3.0 1.6 1.0

EDP-GNN [186] 2.5 2.0 3.0
GraphGDP [217] 2.0 1.1 -
DiscDDPM [218] 1.2 0.9 1.5

EDGE [219] 1.0 1.0 2.0
GG-GAN [215] 4.0 3.1 8.0
MolGAN [216] 3.0 1.9 1.0
SPECTRE [187] 0.5 2.7 2.0
DiGress [197] 1.0 0.9 1.0
DisCo-MPNN 1.4±0.5 0.9±0.2 0.9±0.3

DisCo-GT 0.9±0.2 0.9±0.3 1.1±0.4

remains very slight, indicating our method’s high robustness to changes in sampling steps.

Second, the marginal reference distribution is better than the uniform distribution, consistent

with the observation from DiGress [197].

Additional Results on Community Additional Community plain graph dataset results

are in Table 4.15. Our observation is consistent with the main content: both variants of

DisCo are on par with, or even better than, the SOTA general graph diffusion generative

model, DiGress.

Additional Ablation Study Table 4.16 shows the ablation study of DisCo-MPNN on

QM9 dataset. Our observations are consistent with the main content: (1) generally, the

fewer sampling steps, the lower the generation quality but method’s performance is robust

in terms of the decreasing of sampling steps; (2) the marginal reference distribution is better

than the uniform distribution, consistent with the observation from DiGress [197].

Convergence Study. Figure 4.8 shows the training loss of DisCo-GT andDisCo-MPNN

on four datasets, whose X-axis is the number of iterations (i.e., the number of epochs × the

number of training samples / batch size). We found that overall the training losses converge

smoothly on 4 datasets.

Visualization. The generated graphs on the SBM and Planar datasets are presented in

Figure 4.9. We clarify that the generated planar graphs are selected to be valid because, as
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Table 4.16: Ablation study (mean±std%) with MPNN backbone. V., U., and N. mean Valid,
Unique, and Novel.

Reference Dist. Steps Valid ↑ V.U. ↑ V.U.N. ↑

Marginal

500 98.9±0.7 98.7±0.5 68.7±0.2

100 98.4±1.1 98.0±1.0 69.1±0.6

30 97.7±1.2 97.5±0.8 70.4±1.1

10 92.3±1.9 91.9±2.2 66.4±1.7

5 88.8±3.3 87.1±2.8 67.3±2.9

1 64.4±2.7 63.2±1.9 55.8±1.4

Uniform

500 93.5±1.7 93.2±1.1 64.9±1.0

100 93.1±2.1 92.6±1.7 66.2±1.9

30 87.1±1.8 86.8±1.1 64.0±1.0

10 83.7±3.2 81.9±2.1 61.3±2.0

5 81.5±2.9 75.4±3.4 64.6±2.3

1 71.3±2.3 42.2±4.0 36.9±3.2

(a) SBM (b) Planar

(c) Community (d) QM9

Figure 4.8: Training loss of DisCo on different datasets and backbone models.

Table 4.9 shows, not all the generated graphs are valid planar graphs, but the planar layout
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can only visualize valid planar graphs in our setting 7. The generated SBM graphs are not

selected; even if a part of them cannot pass the strict SBM statistic test, most, if not all, of

them still form 2− 5 densely connected clusters.

(a) SBM

(b) Planar

Figure 4.9: Generated graphs.

4.2.7 Details of the Factorization of Rate Matrices

In this section, we detail the derivation of the factorization of the rate matrix, which is

extended from the following Proposition 3 of [199].

7https://networkx.org/documentation/stable/reference/generated/networkx.drawing.

layout.planar_layout.html
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Proposition 4.6 (Factorization of the rate matrix, Proposition 3 from [199]). If the forward

process factorizes as qt|s(xt|xs) =
∏D

d=1 qt|s(x
d
t |xds), t > s, then the forward and reverse rates

are of the form

Rt(x̄,x) =
D∑
d=1

Rd
t (x̄

d, xd)δx̄\x̄d,x\xd (4.37)

R̃t(x, x̄) =
D∑
d=1

Rd
t (x̄

d, xd)δx̄\x̄d,x\xd
∑
xd0

q0|t(x
d
0|x)

qt|0(x̄
d|xd0)

qt|0(xd|xd0)
(4.38)

where δx̄\x̄d,x\xd = 1 when all dimensions except for d are equal.

As all the nodes and edges are categorical, applying the above proposition of all the nodes

and edges leads to our Remark 4.2.3.

4.2.8 Details of Forward Transition Probability

In this section, we present the derivation of the forward transition probability for nodes;

the forward process for edges can be derived similarly. Note that this derivation has been

mentioned in [199] for generic discrete cases; we graft it to the graph settings and include it

here for completeness. The core derivation of the forward transition probability is to prove

the following proposition.

Proposition 4.7 (Analytical forward process for commutable rate matrices, Proposition 10

from [199]). if Rt and Rt′ commute ∀t, t′, qt|0(xt = j|x0 = i) =
(
e
∫ t
0 Rsds

)
ij

Proof. If qt|0 = exp
(∫ t

0
Rsds

)
is the forward transition probability matrix, it should satisfy

the Kolmogorov forward equation d
dt
qt|0 = qt|0Rs. The transition probability matrix

qt|0 =
∞∑
k=0

1

k!

(∫ t

0

Rsds

)k
, (4.39)

and, based on the fact that Rt and R′
t commute ∀t, t′ , its derivative is

d

dt
qt|0 =

∞∑
k=1

1

(k − 1)!

(∫ t

0

Rsds

)(k−1)

= qt|0Rt. (4.40)

Thus, qt|0 = exp
(∫ t

0
Rsds

)
is the solution of Kolmogorov forward equation. QED.
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For the node i, if its forward rate matrix is set as Ri
t = β(t)Rf , we have Ri

t and

Ri
t′ commute, ∀t, t′. Thus, the transition probability for node i is qt|0 (f

i
t = v|f i0 = u) =(

e
∫ t
0 β(s)Rfds

)
uv
. Based on similar derivation, we have the transition probability for the edge

(i, j) as qt|0

(
e
(i,j)
t = v|e(i,j)0 = u

)
=
(
e
∫ t
0 β(s)Reds

)
uv
.

4.2.9 Proofs

Proof of Proposition 4.5. Proposition 4.5 claims the forward process converges to uni-

form distributions if Rf = 11⊤ − bI and Re = 11⊤ − (a+ 1)I and it converges to marginal

distributions mf and me if Rf = 1m⊤
f − I and Re = 1m⊤

e − I.

Proof. If we formulate the rate matrices for nodes and edges as R
(i,j)
t = β(t)Re, ∀i, j and

Ri
t = β(t)Rf , ∀i, every rate matrix is commutable for any time steps t and t′. In the following

content, we show the proof for the node rate matrix Ri
t = β(t)Rf ; the converged distribution

of edge can be proved similarly. Based on Proposition 4.7, the transition probability matrix

between time steps t and t+∆t is

qt+∆t|t = I+

∫ t+∆t

t

β(s)Rfds+O((∆t)2) (4.41)

(∗)
= I+∆tβ(ξ)Rf +O((∆t)2), (4.42)

where (*) is based on the Mean Value Theorem. If the high-order term O((∆t)2) is omitted

and we short β∆t = ∆tβ(ξ), for Rf = 11⊤ − bI, we have

qt+∆t|t ≈ β∆t11
⊤ + (1− β∆tb)I, (4.43)

which is the transition matrix of the uniform diffusion in the discrete-time diffusion mod-

els [194, 206, 233]. Thus, with T → ∞ and qt+∆t|t to the power of infinite, the converged

distribution is a uniform distribution. Similarly, for Rf = 1m⊤
f − I the transition matrix is

qt+∆t|t ≈ β∆t1m
⊤
f + (1− β∆t)I (4.44)

which is a generalized transition matrix of the ‘absorbing state’ diffusion [206]. The difference

lies at for the ‘absorbing state’ diffusion [206], mf is set as a one-hot vector for the absorbing

state, and here we set it as the marginal distribution. Thus, with T →∞ and qt+∆t|t to the

power of infinite, the converged distribution is a marginal distribution mf . QED.
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Proof of Theorem 4.1. Theorem 4.1 says for G ̸= Ḡ,

∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣2 ≤ Ct + Cnode

t EG0qt|0(G|G0)
∑
i

LCE
(
One-Hot

(
f i0
)
, f̂ i0

)
+ Cedge

t EG0qt|0(G|G0)
∑
i,j

LCE
(
One-Hot

(
e
(i,j)
0

)
, ê

(i,j)
0

)
(4.45)

where the node and edge estimated probability vector (sum is 1) is notated as f̂ i0 = [pθ0|t(f
i =

1|Gt), . . . , pθ0|t(f i = b|Gt)]⊤ ∈ [0, 1]b and ê
(i,j)
0 = [pθ0|t(e

(i,j) = 1|Gt), . . . , pθ0|t(e(i,j) = a+1|Gt)]⊤ ∈
[0, 1]a+1.

Proof. ∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣ (4.46)

=
∣∣∣∑

i

Ait
∑
f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
(q0|t(f

i
0|G)− pθ0|t(f i0|G))

+
∑
i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e(i,j)0 )
(q0|t(e

(i,j)
0 |G)− pθ0|t(e

(i,j)
0 |G))

∣∣∣ (4.47)

≤
∣∣∣∑

i

Ait
∑
f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
(q0|t(f

i
0|G)− pθ0|t(f i0|G))

∣∣∣
+
∣∣∣∑
i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e(i,j)0 )
(q0|t(e

(i,j)
0 |G)− pθ0|t(e

(i,j)
0 |G))

∣∣∣ (4.48)
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We check the first term of Eq. (4.48):

∣∣∣∑
i

Ait
∑
f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
(q0|t(f

i
0|G)− pθ0|t(f i0|G))

∣∣∣ (4.49)

≤
∑
i

Ait sup
f i0

{qt|0(f̄ i|f i0)
qt|0(f i|f i0)

}∑
f i0

∣∣∣q0|t(f i0|G)− pθ0|t(f i0|G)∣∣∣ (4.50)

=
∑
i

Ci
∑
f i0

∣∣∣q0|t(f i0|G)− pθ0|t(f i0|G)∣∣∣ (4.51)

(∗)
≤
∑
i

Ci

√
2
∑
f i0

(
Cf i0 − q0|t(f

i
0|G) log pθ0|t(f i0|G)

)
(4.52)

(∗∗)
≤ C1

√∑
i

∑
f i0

(
Cf i0 − q0|t(f

i
0|G) log pθ0|t(f i0|G)

)
(4.53)

=C1

√
C2 −

∑
i

∑
f i0

q0|t(f i0|G) log pθ0|t(f i0|G) (4.54)

where Ci = Ait supf i0

{
qt|0(f̄

i|f i0)
qt|0(f i|f i0)

}
, Cf i0 = q0|t(f

i
0|G) log q0|t(f i0|G), (*) is based on the Pinsker’s

inequality, (**) is based on CauchySchwarz inequality:
∑n

i=1

√
xi ≤

√
n
∑n

i=1 xi, C1 =√
2n supi{Ci}, C2 =

∑
i

∑
f i0
Cf i0 . Next, the term −

∑
i

∑
f i0
q0|t(f

i
0|G) log pθ0|t(f i0|G) is equiv-

alent to:

−
∑
i

∑
f i0

q0|t(f
i
0|G) log pθ0|t(f i0|G) (4.55)

=− 1

pt(G)
∑
i

∑
f i0

p0,t(f
i
0,G) log pθ0|t(f i0|G) (4.56)

=− 1

pt(G)
∑
i

∑
f i0

∑
G0(f i0)

p0,t(G0,G) log pθ0|t(f i0|G) (4.57)

=− 1

pt(G)
∑
i

∑
f i0

∑
G0(f i0)

πdata(G0)qt|0(G|G0) log pθ0|t(f i0|G) (4.58)

=
1

pt(G)
∑
i

∑
f i0

∑
G0(f i0)

πdata(G0)qt|0(G|G0)LCE(One-Hot(f i0), f̂ i0) (4.59)

=
1

pt(G)
∑
G0

πdata(G0)qt|0(G|G0)
∑
i

LCE(One-Hot(f i0), f̂ i0) (4.60)

=
1

pt(G)
EG0qt|0(G|G0)

∑
i

LCE(One-Hot(f i0), f̂ i0) (4.61)
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where
∑

G0(f i0)
marginalizing all the graphs at time 0 whose i-th node is f i0; p0,t(f

i
0,G) is the

joint probability of a graph whose i-th node is f i0 at time 0 and it is G at time t; p0,t(G0,G)
is the joint probability of a graph which is G0 at time 0 and it is G at time t. Plugging

Eq. (4.61) into Eq. (4.54):∣∣∣∣∣∣
∑
i

Ait
∑
f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
(q0|t(f

i
0|G)− pθ0|t(f i0|G))

∣∣∣∣∣∣
≤C1

√
C2 + C5EG0qt|0(G|G0)

∑
i

LCE(One-Hot(f i0), f̂ i0) (4.62)

where C5 =
1

pt(G) . A similar analysis can be conducted about the second term of Eq. (4.48)

and we directly present it here:∣∣∣∣∣∣∣
∑
i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e(i,j)0 )
(q0|t(e

(i,j)
0 |G)− pθ0|t(e

(i,j)
0 |G))

∣∣∣∣∣∣∣
≤C3

√
C4 + C5EG0qt|0(G|G0)

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 ) (4.63)

where C3 =
√
2n supi,j{Ci,j}, C4 =

∑
i,j

∑
e
(i,j)
0

C
e
(i,j)
0

, Ci,j = B
(i,j)
t sup

e
(i,j)
0

{
qt|0(ē

(i,j)|e(i,j)0 )

qt|0(e
(i,j)|e(i,j)0 )

}
,

C
e
(i,j)
0

= q0|t(e
(i,j)
0 |G) log q0|t(e(i,j)0 |G).

Plugging Eqs. (4.62) and (4.63) into Eq. (4.48), being aware that C1, C2, C3, C4, C5 are

all t-related:∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣ ≤ C1

√
C2 + C5EG0qt|0(G|G0)

∑
i

LCE(One-Hot(f i0), f̂ i0)

+ C3

√
C4 + C5EG0qt|0(G|G0)

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 ) (4.64)

(∗)
≤
(
Ct + Cnode

t EG0qt|0(G|G0)
∑
i

LCE(One-Hot(f i0), f̂ i0)

+ Cedge
t EG0qt|0(G|G0)

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 )

)1/2
(4.65)

where (*) is based on CauchySchwarz inequality, Ct = 2C2
1C2 + 2C2

3C4, C
node
t = 2C2

1C5,

Cedge
t = 2C2

3C5. QED.
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Proof of Lemma 4.3. We clarify that the term “permutation” in this paper refers to the

reordering of the node indices, i.e., the first dimension of F and the first two dimensions of

E.

Proof. The input of an MPNN layer is F = {ri}ni=1 ∈ Rn×d,E = {ri,j}ni,j=1 ∈ Rn×n×d,y ∈ Rd,

where d is the hidden dimension. The updating formulas of an MPNN layer can be presented

as

ri ← FiLM

(
FiLM

(
ri, MLP

(∑n
j=1 r

(j,i)

n

))
,y

)
, (4.66)

r(i,j) ← FiLM
(
FiLM(r(i,j), ri ⊙ rj),y

)
, (4.67)

y← y + PNA
(
{ri}ni=1

)
+ PNA

(
{r(i,j)}ni,j=1

)
, (4.68)

The permutation P of the input of an MPNN layer can be presented as

P
(
F = {ri}ni=1,E = {ri,j}ni,j=1,y

)
=
(
{rσ(i)}ni=1, {rσ(i),σ(j)}ni,j=1,y

)
where σ : {1, . . . , n} 7→

{1, . . . , n} is a bijection.

For PNA (Eq. (4.98)), it includes operations max, min, mean, and std which are all

permutation-invariant and thus, the PNA module is permutation-invariant. Then,

y + PNA
(
{ri}ni=1

)
+ PNA

(
{r(i,j)}ni,j=1

)
= y + PNA

(
{rσ(i)}ni=1

)
+ PNA

(
{r(σ(i),σ(j))}ni,j=1

)
(4.69)

Because
∑n

j=1 r
(j,i) =

∑n
j=1 r

(σ(j),σ(i)), ri ⊙ rj = rσ(i) ⊙ rσ(j), and the FiLM module

(Eq. (4.99)) is not related to the node ordering,

r(σ(i),σ(j)) ← FiLM
(
FiLM

(
r(σ(i),σ(j)), rσ(i) ⊙ rσ(j)

)
,y
)
= FiLM

(
FiLM

(
r(i,j), ri ⊙ rj

)
,y
)
(4.70)

rσ(i) ← FiLM

(
FiLM

(
rσ(i), MLP

(∑n
j=1 r

(σ(j),σ(i))

n

))
,y

)
(4.71)

= FiLM

(
FiLM

(
ri, MLP

(∑n
j=1 r

(j,i)

n

))
,y

)
(4.72)

Thus, we proved that

MPNN (P (F,E,y)) = P (MPNN(F,E,y)) (4.73)

QED.
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Proof of Lemma 4.4.

Proof. The forward rate matrix (Eq. (4.29)) is the sum of component-specific forward rate

matrices ({R(i,j)
t }i,j∈N+

≤n
and {Ri

t}i∈N+
≤n
). It is permutation-invariant because the summation

is permutation-invariant.

The parametric reverse rate matrix is

R̃θ,t(G, Ḡ) =
∑
i

R̃i
θ,t(f

i, f̄ i) +
∑
i,j

R̃
(i,j)
θ,t (e(i,j), ē(i,j)) (4.74)

where R̃i
θ,t(f

i, f̄ i) = Ait
∑

f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
pθ0|t(f

i
0|Gt),

R̃
(i,j)
θ,t (e(i,j), ē(i,j)) = B

(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e
(i,j)|e(i,j)0 )

pθ0|t(e
(i,j)
0 |Gt). If we present the permutation P

on every node as a bijection σ : {1, . . . , n} 7→ {1, . . . , n}, the term

R̃i
θ,t(f

i, f̄ i) = Ait
∑
f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
pθ0|t(f

i
0|Gt) (4.75)

= Ri
t(f̄

i, f i)δḠ\f̄ i,G\f i
∑
f i0

qt|0(f̄
i|f i0)

qt|0(f i|f i0)
pθ0|t(f

i
0|Gt) (4.76)

(∗)
= R

σ(i)
t (f̄σ(i), fσ(i))δP(Ḡ)\f̄σ(i),P(G)\fσ(i)

∑
f
σ(i)
0

qt|0(f̄
σ(i)|fσ(i)0 )

qt|0(fσ(i)|fσ(i)0 )
pθ0|t(f

i
0|Gt) (4.77)

(∗∗)
= R

σ(i)
t (f̄σ(i), fσ(i))δP(Ḡ)\f̄σ(i),P(G)\fσ(i)

∑
f
σ(i)
0

qt|0(f̄
σ(i)|fσ(i)0 )

qt|0(fσ(i)|fσ(i)0 )
pθ0|t(f

σ(i)
0 |P(Gt))

(4.78)

= R̃
σ(i)
θ,t (f

σ(i), f̄σ(i)) (4.79)

where (*) is based on the permutation invariant of the forward process and its rate matrix;

(**) is based on the permutation equivariance of the graph-to-graph backbone pθ0|t. QED.

Proof of Lemma 4.5. Recall the Kolmogorov forward equation, for s < t,

d

dt
qt|s(xt|xs) =

∑
ξ∈X

qt|s(ξ|xs)Rt(ξ,xt). (4.80)

Proof. We aim to show that qt|s(P(xt)|P(xs)) is a solution of Eq. (4.80). Because the
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permutation P is a bijection, we have

d

dt
qt|s(P(xt)|P(xs)) (4.81)

=
∑
ξ∈X

qt|s(P(ξ)|P(xs))Rt(P(ξ),P(xt)) (4.82)

(∗)
=
∑
ξ∈X

qt|s(P(ξ)|P(xs))Rt(ξ,xt) (4.83)

where (*) is because Rt is permutation-invariant. As Eq. (4.83) and Eq. (4.80) share the

same rate matrix, and the rate matrix completely determines the CTMC (and its Kolmogorov

forward equation) [202], thus, their solutions are the same: qt|s(xt|xs) = qt|s(P(xt)|P(xs)),
i.e., the transition probability is permutation-invariant. QED.

Proof of Theorem 4.2.

Proof. We start from a simple case where the parametric rate matrix is fixed all the time,

pθ0(G0) =
∑
GT

qθ0|T (G0|GT )πref(GT ), (4.84)

where the transition probability is by solving the Kolmogorov forward equation

d

dt
qθt|s(Gt|Gs) =

∑
ξ

qθt|s(ξ|Gs)R̃θ(ξ,Gt). (4.85)

Thus, the sampling probability of permuted graph P(G0)

pθ0(P(G0)) =
∑
GT

qθ0|T (P(G0)|P(GT ))πref(P(GT )) (4.86)

(∗)
=
∑
GT

qθ0|T (G0|GT )πref(P(GT )) (4.87)

(∗∗)
=
∑
GT

qθ0|T (G0|GT )πref(GT ) (4.88)

= pθ0(G0) (4.89)

where (*) is based on Lemma 4.4 and Lemma 4.5, the transition probability of DisCo

is permutation-invariant and (**) is from the assumption that the reference distribution

πref(GT ) is permutation-invariant. Thus, we proved that for the simple case, R̃θ,t fixed ∀t,
the sampling probability is permutation-invariant.
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For the practical sampling, as we mentioned in Section 4.2.3, the τ -leaping algorithm as-

sumes that the time interval [0, T ] is divided into various length-τ intervals [0, τ), [τ, 2τ), . . . , [T−
τ, T ] (here both close sets or open sets work) and assume the reverse rate matrix is fixed as

R̃θ,t within every length-τ interval, such as (t− τ, t]. Thus, the sampling probability can be

computed as

pθ0(G0) =
∑

GT ,GT−τ ,...,Gτ

q0|τ (G0|Gτ ) . . . qT−τ |T (GT−τ |GT )πref(GT ). (4.90)

The conclusion from the simple case can be generalized to this τ -leaping-based case because

all the transition probabilities qt−τ |t(Gt−τ |Gt) and the reference distribution are permutation-

invariant. QED.

Note that Xu et al. [234] have a similar analysis in their Proposition 1 on a DDPM-based

model.

Proof of Theorem 4.3. Recall our training objective is

min
θ
TEt∼U(0,T )

EG0Eqt|0(Gt|G0)

[∑
i

LCE(One-Hot(f i0), f̂ i0) +
∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 )

]
(4.91)

where f̂ i0 = [pθ0|t(f
i = 1|Gt), . . . , pθ0|t(f i = b|Gt)]⊤ ∈ [0, 1]b and

ê
(i,j)
0 = [pθ0|t(e

(i,j) = 1|Gt), . . . , pθ0|t(e(i,j) = a+ 1|Gt)]⊤ ∈ [0, 1]a+1

Proof. We follow the notation and present the permutation P on every node as a bijection

σ : {1, . . . , n} 7→ {1, . . . , n}. We first analyze the cross-entropy loss on the nodes for a single

training graph G0 and taking expectation EG0 keeps the permutation invariance:

Lnode(G0) = TEt∼U(0,T )
Eqt|0(Gt|G0)

∑
i

LCE(One-Hot(f i0), f̂ i0) (4.92)

= TEt∼U(0,T )

∑
Gt

qt|0(Gt|G0)
∑
i

LCE(One-Hot(f i0), f̂ i0) (4.93)

(∗)
= TEt∼U(0,T )

∑
Gt

qt|0(P(Gt)|P(G0))
∑
i

LCE(One-Hot(f i0), f̂ i0) (4.94)

(∗∗)
= TEt∼U(0,T )

∑
Gt

qt|0(P(Gt)|P(G0))
∑
i

LCE(One-Hot(fσ(i)0 ), f̂
σ(i)
0 ) (4.95)

= Lnode(P(G0)) (4.96)
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where (*) is from the permutation invariance of the forward process and (**) is from the

permutation equivariance of the graph-to-graph backbone and the permutation invariance

of the cross-entropy loss. A similar result can be analyzed on the cross-entropy loss on the

edges

Ledge(G0) = TEt∼U(0,T )
Eqt|0(Gt|G0)

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 ) = Ledge(P(G0)) (4.97)

and we omit the proof here for brevity. QED.

4.2.10 Sampling Algorithm

A Step-by-step procedure about the τ -leaping graph generation is presented in Algo-

rithm 4.1.

4.2.11 Auxiliary Features, PNA and FiLM Modules

For learning a better graph-to-graph mapping pθ0|t(G0|Gt), artificially augmenting the node-

level features and graph-level features is proved effective to enhance the expressiveness of

graph learning models [197, 235]. For this setting, we keep consistent with the state-of-the-

art model, DiGress [197], and extract the following three sets of auxiliary features. Note

that the following features are extracted on the noisy graph Gt.
We binarize the edge tensor E into an adjacency matrix A ∈ {0, 1}n×n whose 1 entries

denote that any type of edge connects the corresponding node pair.

Motif Features. The number of length-3/4/5 cycles every node is included in is counted

as the topological node-level features; also, the total number of length-3/4/5/6 cycles is the

topological graph-level feature.

Spectral Features. The graph Laplacian is decomposed. The number of connected com-

ponents and the first 5 non-zero eigenvalues are selected as the spectral graph-level features.

An estimated indicator of whether a node is included in the largest connected component,

and the first 2 eigenvectors of the non-zero eigenvalues are selected as the spectral node-level

features.

Molecule Features. On molecule datasets, the valency of each atom is selected as the

node-level feature, and the total weight of the whole molecule is selected as the graph-level
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Algorithm 4.1: τ -Leaping Graph Generation

1 t← T ;

2 Gt = ({e(i,j)}i,j∈N+
≤n
, {f i}i∈N+

≤n
)← πref(G);

3 while t > 0 do
4 for i = 1, . . . , n do
5 for s = 1, . . . , b do

6 R̃i
θ,t(f

i, s) = Ri
t(s, f

i)
∑

f i0

qt|0(s|f i0)
qt|0(f i|f i0)

pθ(f
i|Gt, t);

7 Jf i,s ← Poisson(τRi
t(s, f

i)) // # of transitions for a node

8 end

9 end
10 for i, j = 1, . . . , n do
11 for s = 1, . . . , a do

12 R̃
(i,j)
θ,t (e(i,j), s) = R

(i,j)
t (s, e(i,j))

∑
e
(i,j)
0

qt|0(s|e
(i,j)
0 )

qt|0(e
(i,j)|e(i,j)0 )

pθ(e
(i,j)|Gt, t);

13 Je(i,j),s ← Poisson(τR
(i,j)
t (s, e(i,j))) // # of transitions for an edge

14 end

15 end
16 for i = 1, . . . , n do

17 if
∑b

s=1 Jf i,s > 1 or
∑b

s=1 Jf i,s = 0 then
18 f i ← f i // stay the same

19 end
20 else
21 s∗ = argmaxs{Jf i,s}bs=1;
22 f i ← s∗ // update node

23 end

24 end
25 for i, j = 1, . . . , n do
26 if

∑a
s=1 Je(i,j),s > 1 or

∑a
s=1 Je(i,j),s = 0 then

27 e(i,j) ← e(i,j) // stay the same

28 end
29 else
30 s∗ = argmaxs{Je(i,j),s}bs=1 e

(i,j) ← s∗ // update edge

31 end

32 end
33 t← t− τ ;
34 end

feature.

The above node-level features and graph-level features are concatenated together as the

auxiliary node-level features Faux and graph-level features y. An important property is

that the above node-level features are permutation-equivariant, and the above graph-level
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features are permutation-invariant, whose proof is straightforward, so we omit it here.

Next, two important modules used in the MPNN backbone, PNA and FiLM, are described

in detail.

PNA Module. The PNA module [213] is implemented as follows,

PNA({xi}ni=1) = MLP(min({xi}ni=1)⊕ max({xi}ni=1)⊕ mean({xi}ni=1)⊕ std({xi}ni=1)) (4.98)

where ⊕ is the concatenation operator, xi ∈ Rd; min, max, mean, and std are coordinate-wise,

e.g., min({xi}ni=1) ∈ Rd.

FiLM Module. FiLM [214] is implemented as follows,

FiLM(xi,xj) = Linear(xi) + Linear(xi)⊙ xj + xj (4.99)

where Linear is a single fully-connected layer without activation function and ⊙ is the

Hadamard product.

4.2.12 Hyperparameter Settings

Hyperparameter Settings for Forward Diffusion. As we introduced in Proposition 4.5,

we tried two sets of rate matrices for the node and edge forward diffusion, so that the

converged distribution is either uniform or the marginal distribution. We found that the

marginal distribution leads to better results than the uniform distribution. Thus, the ref-

erence distribution is the marginal distribution for all the main results, except Tables 4.14

and 4.16. The performance comparison between the marginal diffusion and uniform diffusion

is presented in the ablation study in Sections 4.2.6 and4.2.6. The β(t) controls how fast

the forward process converges to the reference distribution, which is set as β(t) = αγtlog(γ),

which is consistent with many existing works [195, 196, 199]. In our implementation, we

assume the converged time T = 1 and for the forward diffusion hyperparameters (α, γ) we

tried two sets: (1.0, 5.0) and (0.8, 2.0) where the former one can ensure at T = 1 the distri-

bution is very close to the reference distribution, and the latter one does not fully corrupt

the raw data distribution so the graph-to-graph model pθ0|t is easier to train.

Hyperparameter Settings for Reverse Sampling. The number of sampling steps is

determined by τ , which is round( 1
τ
) if we set the converged time T = 1. We select the number

of sampling steps from {50, 100, 500}, which is much smaller the number of sampling steps
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of DiGress [197] from {500, 1000}. For the number of nodes n in every generated graph, we

compute a graph size distribution of the training set by counting the number of graphs for

different sizes (and normalize the counting to sum it up to 1). Then, we will sample the

number of nodes from this graph size distribution for graph generation.

Hyperparameter Settings for Neural Networks. For DisCo-GT, the parametric

graph-to-graph model pθ0|t is graph transformer (GT). We use the exactly same GT architec-

ture as DiGress [197] and adopt their recommended configurations 8. The reason is that this

architecture is not our contribution, and setting the graph-to-graph model pθ0|t same can en-

sure a fair comparison between the discrete-time graph diffusion framework (from DiGress)

and the continuous-time graph diffusion framework (from this work). For DisCo-MPNN,

we search the number of MPNN layers from {3, 5, 8}, set all the hidden dimensions the same,

and search it from {256, 512}. For both variants, the dropout is set as 0.1, the learning rate

is set as 2e−4, and the weight decay is set as 0.

4.3 HOW TO MAKE LMS STRONG NODE CLASSIFIERS?

4.3.1 Introduction

There is a growing trend of utilizing Language Models (LMs) for machine learning tasks

across diverse domains. This approach has shown tremendous promise in areas such as

vision [236], audio [237], and multimodal learning [238]. In graph learning, recent efforts

have begun to explore the capabilities of LMs in understanding and processing graph struc-

tures. [239] showed that LMs can detect node connectivity and identify cycles, while [240]

explored LMs’ ability to evaluate graph scale and identify connected components. Further-

more, InstructGLM [241] and LLaGA [242] achieved state-of-the-art (SOTA) performance

in text-output node classifiers on Text-Attributed Graphs (TAG) [243], whose nodes have

textual features.

However, both InstructGLM and LLaGA suffer from a fundamental limitation that com-

promises the generality of the backbone LM. Specifically, InstructGLM expands the LM’s

vocabulary by creating unique tokens for nodes, whose token embeddings are topology-

aware node embeddings. It comes at the cost of incompatibility with two important use

cases: (1) multi-task learning on diverse datasets, a common strategy for training Foun-

dational Models [244, 245], and (2) certain personalized LM fine-tuning services [246] that

8https://github.com/cvignac/DiGress/tree/main/conFigures/DisCo/experiment
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restrict modifications or access to the backbone model architecture/code9. LLaGA uses a

shared text encoder and a projector to overcome the first limitation but still bears inflexibil-

ity when deploying different LMs and cannot be applied to LMs without code/architecture

access. The above discussion raises a crucial question: How can off-the-shelf, text-to-text

instruction-tuned LMs [247] achieve competitive performance in node classification tasks

without architectural modifications?

In stark contrast to [248], which suggests that LMs may only interpret graph structures

in prompts as contextual paragraphs, our work presents a more optimistic outlook. We aim

to overcome this inherent limitation by augmenting the LMs’ input while preserving their

original architecture. Our proposed model, AuGLM (Aumented Graph Language Model),

leverages two key augmentation strategies to enhance the LM’s ability to process graph data:

• Relevant Node Retrieval: In contrast to InstructGLM, which relies on multi-hop

ego networks akin to message-passing GNNs for structure-aware contextualization,

AuGLM draws inspiration from Graph Transformers (GTs) [201, 249] and Retrieval-

Augmented Generation (RAG) [250, 251]. This enables the LM to access long-range

structural and semantic information about the target node. We propose two com-

plementary approaches to achieve this: (1) topological retrieval, and (2) prototypical

semantic retrieval.

• Candidate Label Pruning: To improve LMs’ understanding of graph data while

maintaining their text-to-text architecture, we convey the guidance from a specialist

model, a pretrained lightweight GNN, to the input of LMs via narrowing down the

candidate labels. This allows LMs to focus on discerning between closely related

candidates, ultimately enhancing the performance.

We extensively evaluate our approach on four real-world TAGs, showing the effectiveness

of AuGLM. The results indicate that backbone LMs augmented with AuGLM consistently

outperform SOTA text-output classifiers while also matching or surpassing the performance

of SOTA vector-output classifiers. These findings represent a crucial step towards bridging

the gap between tailored task-specific node classifiers and more general, fine-tuned LMs,

highlighting the potential for unified models excelling in multiple tasks.

4.3.2 Preliminaries

We use the following notation conventions: bold lower-case letters (e.g,. x) denote column

vectors, bold upper-case letters (e.g., X) denote matrices, and calligraphic upper-case letters

9https://platform.openai.com/docs/guides/fine-tuning
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(a) InstructGLM and LLaGA. (b) AuGLM (ours).

Figure 4.10: Comparison of pipelines between the existing LM-based node classifiers and our
approach, AuGLM. Unlike InstructGLM and LLaGA, which explicitly encodes graph infor-
mation into token embeddings as a form of soft prompting, AuGLM maintains the original
text-to-text framework of the off-the-shelf LM, offering greater generality and flexibility.

(e.g., X ) denote sets. We use [·] and [·, ·] to index vectors and matrices, respectively.

We study the node classification problem on TAGs where each node is associated with

textual attributes. A TAG with n nodes is represented as G = (V , E , T ), where V = {vi}ni=1

denotes a set of nodes, and E = {eij}ni,j=1 is a set of edges where eij = 1 indicates that

nodes vi and vj are connected; otherwise, eij = 0. T = {ti}ni=1 indicates the set of node

textual attributes. The edges can also be represented by an adjacency matrix A ∈ {0, 1}n×n,
where A[i, j] = 1 if and only if eij = 1. The training and test node labels are denoted by

Y = Ytrain ∪ Ytest = {yi}ni=1, where each label yi belongs to one of the C classes, i.e.,

yi ∈ {1, . . . , C}, ∀i. In the semi-supervised setting studied in this paper, the graph structure

and training labels V , E , T ,Ytrain are accessible during training. The task is to predict the

labels of test nodes Ytest.

Personalized PageRank (PPR). PPR [12, 252] ranks all the nodes according to their

relevance to a given query node. Specifically, given the adjacency matrix A, the PPR scores

ri ∈ Rn for all nodes concerning the query node vi are computed iteratively as:

ri ← (1− α)Ãri + αqi (4.100)

where α ∈ (0, 1) is the teleport probability, qi ∈ {0, 1}n is a one-hot vector whose i-th entry

is 1, Ã = AD−1 is the normalized adjacency matrix, and D is the degree matrix. Once

ri converges, the top-K relevant nodes concerning the query node vi can be identified as

follows:

PPR(vi, K) = {vj : ri[j] ∈ topK(ri)} (4.101)

Language Models (LMs). We employ autoregressive LMs that predict the next token

zi based on the input sequence t and the context of previously generated tokens z1:i−1. The
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(a) A typical graph-to-text template. (b) Our template with augmented text.

Figure 4.11: Comparison of a typical graph-to-text template (a) and our template with
augmented text features (b).

probability of generating a sequence z given the input t is:

pLM(z|t) =
|z|∏
i=1

pLM(zi|t, z1:i−1) (4.102)

Retrieval-Augmented Generation (RAG). RAG [250, 251] first retrieves a query t-

relevant text d∗ from an external corpus D via a similarity function sϕ:

d∗ = argmax
d∈D

sϕ(d, t) (4.103)

sϕ is typically implemented as a dual-encoder architecture [253]:

sϕ(d, t) = ⟨Encoderϕ(d), Encoderϕ(t)⟩ (4.104)

Once d∗ is retrieved, it is fed into the LM together with the initial query t: pLM(z|d∗, t) for
generation.

4.3.3 Method

We explore the application of LMs to node classification, leveraging the instruction tun-

ing to reformulate node classification as a text-to-text task [247]. Our method employs

carefully designed prompt templates and augmentation techniques to transform graph data

and ground truth labels into text pairs, enabling LMs to process and be fine-tuned without

modifying their underlying architecture.
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Figure 4.12: A detailed pipeline of AuGLM. In the semantic retrieval module, rectangle
nodes denote the class prototypes.

As shown in Figure 4.10, AuGLM fundamentally differs from InstructGLM [241] and

LLaGA [242], the current SOTA LM node classifiers. While all three methods utilize prompt

templates to transform input graphs into text, InstructGLM and LLaGA explicitly encode

node features into the LM’s token embeddings which can be categorized as soft

prompting [254]. In contrast, our approach provides a data augmentation-based frame-

work without modifying the LM’s text-to-text architecture, enabling our model to retain the

versatility of the original LM. The following section first details the augmentation techniques

developed by this paper and then introduces the templates to incorporate all the augmented

textual features.

Retrieval-based Aggregation. General LMs are not designed to process graph data

directly. To overcome this, a common approach is to employ prompt templates to transform

graph data and associated tasks into text that LMs can understand. For instance, for the

Cora [255] literature citation graph, a typical template [241, 248] for node classification, as

shown in Figure 4.11a, consists of three main components: (1) a short classification task

description, (2) the target node’s textual features, e.g., its title and abstract, and (3) textual

features from relevant nodes.

The success of the message-passing GNNs highlights the importance of the aggregation

operation, whose typical example is the mean pooling of intermediate node embeddings. A

similar spirit is followed for the LM-based classifiers, whose key design is the selection of

relevant nodes. Existing works [241, 248] select one/multi-hop neighbors as relevant nodes,

but we posit that this approach is suboptimal for two reasons. Firstly, not all immediate or
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extended neighbors are relevant to the target node, which can introduce noise and degrade

model performance. Secondly, incorporating multi-hop neighbors can lead to “neighbor

explosion” [256, 257, 258], i.e., an exponentially-growing set of “relevant” nodes, resulting

in increased computational costs, slower model training/inference, and even lead to the

out-of-memory issue. In response, two novel solutions, topological retrieval and prototypical

semantic retrieval, are proposed to identify the most informative nodes for classification

tasks efficiently.

Topological Retrieval. PPR [12, 252] is leveraged for topological retrieval, which has

shown great effectiveness in conjunction with GNNs [259]. The success of PPR suggests that

its retrieved neighbors may provide more informative context than generic one-hop or multi-

hop neighbors. Specifically, for a target node vi, we select its top-K neighbors PPR(vi, K)

based on their PPR scores (Eqs. (4.100) and (4.101), Section 4.3.2). Then, the text features

from the PPR neighbors are concatenated as the PPR-retrieved text tPPR = ⊕j;vj∈PPR(vi,K) tj,

where ⊕ denotes text concatenation.

It is worth noting that the classic PPR algorithm is computationally expensive for large

graphs due to the matrix multiplication (Eq. (4.100)). However, efficient approximate so-

lutions such as ApproximatePR [260], can be applied to mitigate this issue. Nevertheless,

PPR is a topology-based heuristic that inherently cannot leverage textual features or super-

vision from downstream LMs. To enhance our framework’s semantic awareness, we propose

a complementary strategy, called prototypical semantic retrieval, which is discussed below.

Prototypical Semantic Retrieval. Our semantic retrieval module draws inspiration

from two popular techniques: (1) RAG [250, 251], which retrieves external corpora, and (2)

Graph Transformers [201], which aggregate messages from distant nodes via inner product-

based attention weights. In the context of node classification, we treat the textual features

of all nodes except the target node as a surrogate “external corpus.” However, unlike

typical question-answering tasks [261, 262], retrieving textual features from a single node

is often insufficient for accurate node classification. To address this, we enhance the

semantic retrieval by retrieving prototypes, which capture the essence of each class [131].

We employ prototypes [263] as representative examples in the classification problem. To

obtain these prototypes, a lightweight GNN ψ is pretrained in a semi-supervised way and

generates a prediction vector for each node: ỹi = GNNψ(vi,G) ∈ RC ,∀vi. The prediction

confidence for each node vi is defined as: Conf(vi) = maxj ỹi[j]. The predicted class-c

examples are Ỹc = {vi : argmaxj ỹi[j] = c} and their confidence is Confc = {Conf(vi) : vi ∈
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Ỹc}. For each class c, the top-N confident examples are selected as prototypes:

Pc =
{
vi : vi ∈ Ỹc ∧ Conf(vi) ∈ topN (Confc)

}
(4.105)

For all the classes, there are N × C prototypes: P =
⋃
c∈{1,...,C}Pc. To ensure every doc-

ument in the corpus D includes text features from multiple nodes, D is constructed by

concatenating the text of each prototype’s PPR neighbors:

D =

{
⊕

j;vj∈PPR(vi,K)
tj : vi ∈ P

}
(4.106)

Next, for each target node with its associated text features ttarget, we compute the prototyp-

ically retrieved text using Eq. (4.103): tproto = argmaxd∈D sϕ(d, ttarget). In our experiments,

we may use tPPR (from topological retrieval), or tproto, or both by concatenation tPPR⊕ tproto.
For simplicity, we denote the final retrieved text as tretri.

Classifier Guidance. Recent studies [240, 248, 264] highlighted mainstream LMs’ lim-

ited understanding of graph topology. While InstructGLM [241] and LLaGA [242] address

this limitation by incorporating topology-aware node embeddings (e.g., from a pretrained

or parameter-free GNN) into the LM’s token embeddings, this approach necessitates mod-

ifications to the LM’s architecture. We propose an alternative method that conveys

guidance from a pretrained GNN into the input text of LMs, thereby preserving the LM’s

original architecture. Concretely, such guidance is to prune the classification candidates.

We repurpose the pretrained GNNψ from the prototypical semantic retrieval module. For

each node vi, we identify and save the top-I predicted labels:

Li = {j : ỹi[j] ∈ topI (ỹi)} ∈ {1, . . . , C}I (4.107)

where I < C. For datasets in the experiments, the IndexToLabel maps are available, which

map numerical labels to their corresponding text. The pruned label candidates for node vi

can be presented as concatenated text: tcandidates = ⊕i∈Li
IndexToLabel(i). The integration

of pruned candidates into the template is detailed in Section 4.3.3.

By focusing on a more relevant set of candidate labels, valuable topology-aware inductive

bias from the GNN is incorporated into the LM’s input, thereby enhancing its ability to

perform node classification without altering its fundamental architecture.
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Overall Template. Our augmented training samples include three key elements: (1) the

target node’s text ttarget, (2) the retrieved nodes’ text tretri, and (3) the pruned label candi-

dates tcandidates. We collectively denote these elements as tin = (ttarget, tretri, tcandidates). LM’s

prediction probability for the target sequence ytarget is based on Eq. (4.102) whose input text

t is tin and the output sequence z is ytarget.

Figure 4.11b presents an exemplar template for the Cora dataset, showcasing the inte-

gration of ttarget, tretri, and tcandidates. The selection of the backbone LM will be detailed in

Section 4.3.4. Section 4.3.7 contains a complete list of templates. Note that we exclude the

“abstracts” of the retrieved nodes to prevent exceeding the maximum input length of most

LMs. We utilize only this template’s “model input” part during evaluation.

Training. Our framework includes three parameterized modules that require training or

fine-tuning: (1) GNNs for generating prototypes and candidate label pruning, as described in

Sections 4.3.3 and 4.3.3, (2) the encoder ϕ from the semantic retriever, defined in Eq. 4.104,

and (3) the backbone LM, utilized in Eq. 4.102. The GNNs from Sections 4.3.3 and 4.3.3

can be shared, and their training is independent of the other modules, which are supervised

by ground truth labels. This process is detailed in Section 4.3.5.

One of the standard LM’s losses, the average token-wise negative log-likelihood (NLL), is

used. For a target node, the loss is:

LNLL(pLM(ytarget|tin), ytarget) (4.108)

To train the semantic retriever, we employ a distribution-matching loss. For a given target

node’s text ttarget, its retrieval probability for a prototype text t ∈ D is:

pϕ(t|ttarget) =
esϕ(t,ttarget)∑
t′∈D e

sϕ(t′,ttarget)
(4.109)

Next, an empirical distribution supervised by the LM is:

p̃LM(t|ttarget, ytarget) =
epLM(ytarget|tin)∑
t′∈D e

pLM(ytarget|t′in)
(4.110)

where tin = (ttarget, t, tcandidates) and t′in = (ttarget, t
′, tcandidates). This distribution represents

the normalized importance of each prototype text t ∈ D based on the LM’s like-

lihood of generating the ground truth text ytarget. We use p̃LM to distinguish this

distribution from the generation probability in Eqs. (4.102).

The distribution matching loss is the Kullback-Leibler (KL) divergence between the re-
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Algorithm 4.2: Training AuGLM

1 Given: (1) A graph G = (V , E , T ) and training labels Ytrain, (2) initialized backbone
LM θ, (3) initialized semantic encoder ϕ, and (4) initialized GNN ψ;

2 Preprocessing: (1) train the GNN ψ based on G = (V , E , T ) and Ytrain till
convergence; (2) generate prototypes and their text via Eqs. (4.105) and (4.106);
(3) generate the pruned label candidates for every node via Eq. (4.107).;

3 while θ and ϕ not converged do
4 Sample vi ∼ V whose text is ti.;
5 Retrieve the relevant nodes’ text tretri,i via topological (Eq. (4.101)) and/or

semantic retrieval (Eq. (4.103)).;
6 Plug ti, tretri,i, and tcandidates,i (from preprocessing (3)) into the template (e.g.,

Figure 4.11b), compute the NLL loss by Eq. (4.108), and update θ.;
7 Compute retrieval distribution pϕ(·|ti) by Eq. (4.109).;
8 Call LM inference |D| times for {pLM(yi|ti, t)}t∈D and p̃LM(·|ti, yi).;
9 Compute retriever loss by Eq. (4.111) and update ϕ.;

10 end

trieved and the LM-supervised distributions:

KL (sg (p̃LM (·|ttarget, ytarget)) ∥pϕ(·|ttarget)) (4.111)

This loss aims to align the retrieved probability of each prototype text t ∈ D with its

importance in facilitating the LM’s generation of the label text ytarget for the target node. The

stop gradient operator sg ensures that only the semantic retriever ϕ is updated while keeping

the LM’s parameters θ frozen. This objective has been used by previous works [265, 266]

without a thorough analysis. We examine its properties and implications in Section 4.3.6.

Notably, computing Eq. (4.110) requires |D| inferences of the LM due to the denomina-

tor. However, the LM is fine-tuned only on the NLL loss for the most relevant prototype,

argmaxd∈D sϕ(d, ttarget) via Eq. (4.108). Consequently, each update step involves |D| forward
passes but only one backpropagation. To further reduce the computational overhead asso-

ciated with |D| inferences, we can employ a typical sampling strategy: selecting the top-M

samples to form a retrieval minibatch DM = {t : t ∈ topMt′∈Dsϕ(t
′, ttarget)}. By replacing D

with DM in Eqs. (4.109) and (4.110), the retrieval and the LM-supervised distributions can

be computed “in-batch”, reducing the total inference times from |D| to M .

Algorithm 4.2 outlines a step-by-step process for fine-tuning AuGLM, processing one

training node per step. This procedure can be readily extended to mini-batch settings.
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Table 4.17: Accuracy (%) comparison between AuGLM and existing SOTA models. The
best-performing vector-output and text-output models on each dataset are highlighted
in blue and red, respectively.

Method Cora Pubmed ogbn-arxiv ogbn-products

V
ec
to
r-
ou

tp
u
t

GCN 87.78±0.96 88.90±0.32 73.60±0.18 75.64±0.21

GraphSAGE 86.51±2.36 89.08±0.28 73.88±0.33 76.04±0.25

BernNet 88.52±0.95 88.48±0.41 – –
FAGCN 88.85±1.36 89.98±0.52 – –
GCNII 88.98±1.33 89.80±0.52 72.74±0.16 –

ACM-GCN 89.75±1.16 91.44±0.59 – –
GLEM + RevGAT 88.56±0.60 94.71±0.20 76.97±0.19 –
GIANT + RevGAT 83.53±0.38 85.02±0.48 75.90±0.19 71.89±0.30

GIANT + GCN 84.23±0.53 84.19±0.50 73.29±0.10 69.77±0.42

DeBERTa 76.06±3.78 94.94±0.46 73.61±0.04 72.97±0.23

TAPE + RevGAT 92.90±3.07 96.18±0.53 77.50±0.12 82.34±0.36

T
ex
t-
ou

tp
u
t ChatGPT-3.5 67.90 93.42 73.40 74.40

InstructGLM 90.77±0.52 94.62±0.13 75.70±0.12 –
LLaGA 89.85 95.06 76.66 –

AuGLM (T5-small) 91.14±0.55 94.80±0.15 75.39±0.21 81.73±0.08

AuGLM (T5-base) 91.24±0.46 95.03±0.35 76.80±0.14 81.91±0.11

AuGLM (T5-large) 91.51±0.26 95.16±0.18 76.00±0.23 82.90±0.10

Model Complexity. AuGLM consists of three parameterized modules: (1) a GNN ψ,

(2) the semantic retriever ϕ, and (3) the backbone LM θ. Notably, ψ and ϕ are lightweight,

with the number of parameters being only 1/30 to 1/3 of the number of LM θ parameters.

Compared to the SOTA InstructGLM [241], AuGLM has an additional module ϕ, resulting

in slightly more parameters, which are relatively minor. For training, the GNN ψ can be

trained independently, and the PPR scores can be precomputed. The training of θ relies

on the retrieved text from ϕ, while the training of ϕ requires p̃LM(·|ttarget, ytarget), which

is obtained through forward inference of θ. Importantly, computational graphs (used for

gradient computation) of θ and ϕ are independent. When training ϕ, the stop gradient

operator sg ensures θ has no gradient. As a result, the cost of backpropagation is similar to

updating the LM θ and the semantic encoder ϕ separately.

4.3.4 Experiments

Setups. Following [241, 267], we evaluate our approach on four benchmark datasets:

Cora [255], Pubmed [255], ogbn-arxiv [268], and a subset of ogbn-products [267, 268]. The

dataset statistics are in Table 4.18.
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Our implementation employs two pretrained all-MiniLM-L6-v2 models [269] as the the

semantic retriever ϕ (Eq. (4.104)) and the text encoder for GNN ψ (Eq. (4.112)). We set

the PPR teleport probability α = 0.1. We employ a 3-layer GraphSAGE [256] with a hidden

dimension of 256 as ψ. Our hyperparameter settings include K = 5 PPR neighbors, N = 10

prototypes, and M = 8 samples for LM inference. The number of label candidates I is

searched from {2, 3}. Flan-T5-small/base/large [270] are used as the backbone LM θ, whose

parameters are instruction-tuned using the templates in Section 4.3.7.

Dataset Statistics. We present the detailed statistics of datasets used in this paper in

Table 4.18.

All the baseline methods’ performance on the Cora, Pubmed, and ogbn-arxiv is reported

from the public leaderboards 101112 and their published papers.

The ogbn-products dataset used in this paper is a subset of the original ogbn-products

dataset [268] from TAPE [267]. We follow the settings in TAPE and report baseline methods’

performance from the TAPE [267] paper.

Table 4.18: Dataset statistics.

Name # Nodes # Edges # Classes Split Strategy Evaluation Metric

Cora 2 708 10 556 7 Random 60/20/20% Accuracy

Pubmed 19 717 88 648 3 Random 60/20/20% Accuracy

ogbn-arxiv 169 343 1 166 243 40 Given split Accuracy

ogbn-products 54 025 198 663 47 Given split Accuracy

Comparison with State of the Arts. This section presents the comparison between

AuGLM and SOTA baselines. We categorize models into two groups: (1) vector-output

models, which output a vector with dimension equal to the number of classes, and (2) text-

output models, whose output is text. Specifically, results from GCN [271], BernNet [272],

FAGCN [273], GCNII [274], ACM-GCN [275], GLEM [276]+RevGAT, InstructGLM [241]

and LLaGA [242] are reported according to the leaderboards and their papers. The results

for TAPE+RevGAT, GIANT [277]+RevGAT [278], GIANT+GCN, DeBERTa [279], and

ChatGPT3.5 are reported from [267]. All models are (at least partially) fine-tuned on the

training set except ChatGPT-3.5. Mean and standard deviation over 5 runs are reported.

10https://paperswithcode.com/sota/node-classification-on-cora-60-20-20-random
11https://paperswithcode.com/sota/node-classification-on-pubmed-60-20-20-random
12https://ogb.stanford.edu/docs/leader_nodeprop/
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Table 4.19: FLOPs comparison between different modules.

Module FLOPs (109)

Retriever 2.3
T5-small 71.7
T5-base 257.2
T5-large 845.4

Figure 4.13: Convergence curve of AuGLM.

For text-output models, accuracy is evaluated by checking whether the model’s generated

text matches the ground truth text exactly.

Table 4.17 presents a comparison between AuGLM and SOTAs. AuGLM consistently

outperforms InstructGLM and LLaGA, achieving new SOTA performance among text-

output node classifiers. Notably, this superior performance is achieved without modifying

any of the LMs’ architectures, demonstrating the effectiveness of our approach. Furthermore,

AuGLM exhibits competitive performance compared to the best vector-output

models. Specifically, on Cora, Pubmed, and ogbn-arxiv datasets, AuGLM performs closely

to that of the SOTA vector-output models. Furthermore, on the ogbn-products dataset,

AuGLM surpasses the performance of the best vector-output model, TAPE.

Efficiency Study: FLOPs. The floating point operations (FLOPs) of AuGLM are stud-

ied. Specifically, the computation of our AugGLM includes (1) precomputing PPR neighbors

for every node, (2) training and inference of the semantic retriever ϕ, and (3) training and

inference of the LM θ. Hence, the extra on-the-fly computation cost is from the semantic

retriever ϕ (all-MiniLM-L6-v2 in our experiments). We report the FLOPs of the retriever

and different LM backbones in Table 4.19. The results show that (1) the retriever only adds

a tiny amount of FLOPs to the backbone LMs and (2) our proposed AuGLM is efficient.
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Table 4.20: Running time (ms) of different modules.

Module Forward Backprop

Retriever 14.7 6.1
T5-small 90.0 32.0
T5-base 104.4 66.6
T5-large 277.2 197.0

Efficiency Study: Convergence Curve. We train AuGLM with different backbone

LMs: FLAN-T5-small/base/large on the Cora dataset and plot their loss curves regarding

updating steps in Figure 4.13. In this experiment, the batch size is 16. It shows that our

proposed AuGLM converges smoothly and quickly when equipped with various LMs of

different scales.

Efficiency Study: Running Time. The running time (both forward and backpropaga-

tion) of the semantic retriever and the backbone LMs on the Cora dataset is recorded. The

batch size is 1. This experiment is tested on an NVIDIA A100-SXM4-80GB. Table 4.20

shows that the semantic retriever only adds very limited on-the-fly computation overhead

compared to the LM, demonstrating the efficiency of AuGLM.

Efficiency Study: Memory Usage. Memory usage is linear with respect to batch size.

We report the memory usage of AuGLM with different backbone LMs in Table 4.21, where

we set the batch size to 1 and we found the experimental results reasonable because more

powerful backbone LMs require more GPU memory.

Table 4.21: GPU Memory usage (MB) with different LMs.

Model Memory

AuGLM (T5-small) 3 098
AuGLM (T5-base) 6 572
AuGLM (T5-large) 20 308

Ablation Study. To evaluate the contribution of each key component in AuGLM, we

conducted an ablation study on three crucial modules: (1) topological retrieval, (2) seman-

tic retrieval, and (3) candidate label pruning. In this subsection, Flan-T5-small is used.

The results in Table 4.22 demonstrate that each module consistently improves performance
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Table 4.22: Ablation study results (accuracy %). T, S, and L denote topological retrieval,
semantic retrieval, and label pruning, respectively. ↓ indicates accuracy drop compared to
the full model (T+S+L).

Model Cora Pubmed ogbn-arxiv ogbn-products

T+S 85.52 (↓5.62) 94.40 (↓0.40) 72.91 (↓2.48) 79.83 (↓1.90)

T+L 87.27 (↓3.87) 94.32 (↓0.48) 73.79 (↓1.60) 81.05 (↓0.68)

S+L 90.25 (↓0.89) 94.26 (↓0.54) 73.46 (↓1.93) 79.06 (↓2.67)

T+S+L 91.14 94.80 75.39 81.73

Table 4.23: Joint vs. separate training (accuracy %).

Training Cora Pubmed ogbn-arxiv ogbn-products

Joint 91.52 94.52 74.87 82.29
Separate 91.14 94.80 75.39 81.73

across all datasets. Notably, our analysis reveals that the relative importance of each compo-

nent varies across different datasets. For instance, candidate label pruning greatly impacts

performance for the Cora dataset, whereas its effect is less pronounced for the ogbn-products

dataset. This variation in component importance underscores the adaptability of our ap-

proach, which can effectively accommodate diverse datasets with different characteristics.

Multi-Task Training. One of the key advantages of pure text-to-text instruction tun-

ing is that a single model can be trained on multiple tasks with the same input-output

format. To verify this, AuGLM with Flan-T5-small is jointly trained on diverse datasets:

Cora, Pubmed, ogbn-arxiv, and ogbn-products. The results in Table 4.23 show that the

jointly trained model achieves performance comparable to models trained separately on

each dataset. We observe that on specific datasets, such as Cora and ogbn-products, the

jointly trained model outperforms its dataset-specific counterparts.

These findings suggest that our approach can effectively handle multiple graph datasets

using a single model, without incurring significant performance losses compared to models

trained individually. This capability is crucial for efficient model deployment when dealing

with diverse graphs. In contrast, other approaches, such as InstructGLM, require the addi-

tion of a large token dictionary to accommodate all nodes in the joint dataset, which hinders

their ability to achieve similar generality. Moreover, most vector-output models, including

TAPE, are limited by their predefined input-output dimensions, making them inflexible and

unable to handle multiple datasets.
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Hyperparameter Study: Backbone GNNs. Specifically, we study the performance

of AuGLM equipped with different GNNs. We compared the performance of AuGLM

equipped with GraphSAGE (used in the reported results) with the counterpart equipped

with GCN [271]. The comparison is in Table 4.24.

Table 4.24: Performance (accuracy %) comparison of AuGLM equipped with different
GNNs.

Model Cora Pubmed ogbn-arxiv ogbn-products

GraphSAGE 91.14 94.80 75.39 81.73
GCN 90.98 94.85 75.21 81.82

We observed that the performance is nearly identical between GCN and GraphSAGE. This

can be attributed to two factors: (1) the classification performances of GCN and GraphSAGE

are similar, and (2) the GNN is used to generate prototypes and prune candidate labels,

which does not require a highly powerful GNN for accurate classification.

Hyperparameter Study: Number of PPR Retrieved Nodes. Next, we examined

the relationship between the model performance and the number of nodes retrieved. In

this auxiliary experiment, we fixed the number of nodes retrieved by semantic retrieval at

5 and varied the number of nodes retrieved by PPR retrieval. The results are reported in

Table 4.25

Table 4.25: Accuracy (%) of AuGLM on ogbn-arxiv with different numbers of PPR-
retrieved neighbors. The best result is bolded.

# Neighbors Accuracy (%)

1 75.18
3 75.76
5 75.39
7 75.19
9 76.05
10 76.45
15 75.99
20 74.81
25 74.48

Interestingly, we found that the model’s performance remains relatively stable when the

number of PPR nodes is less than 15. However, the performance degrades when too many

nodes are retrieved (more than 15). A possible explanation is that when the number of PPR
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Table 4.26: Accuracy (%) of AuGLM with different topological retrieval techniques across
datasets. The best result for each dataset is bolded.

Retrieval Technique Cora Pubmed ogbn-arxiv ogbn-products

1-hop neighbors 90.59 94.33 73.97 79.53
GAE 90.83 94.42 74.01 79.85

PPR neighbors 91.14 94.80 75.39 81.73

nodes becomes too large, every target node’s retrieved nodes become similar (e.g., some

hub nodes are retrieved by most nodes), reducing the discriminativeness of each target node.

This phenomenon is reminiscent of the “oversmoothing” problem [280] in GNNs, where a

GNN with too many layers and too large receptive field produces indistinguishable latent

representations for all nodes.

Hyperparameter Study: Other Topological Retrieval Options. In this auxiliary

experiment, we use the link predictor to retrieve relevant neighbors. Specifically, we trained

a graph autoencoder (GAE) [281], a basic graph neural network-based link predictor, on the

given graph. Then, we retrieved the top-5 most confident neighbors from the recon-

structed graph to replace those obtained through PPR retrieval. The results are presented

in Table 4.26, where Flan-T5-small is used as the backbone LM. For better reference, we

also provide a version where PPR retrieval is replaced with retrieving from 1-hop neighbors.

We observe that both 1-hop neighbor retrieval and GAE perform worse than their PPR

counterparts. A possible reason is that both 1-hop neighbor retrieval and GAE are local

retrieval methods, whereas PPR can effectively capture the global structure. Additionally,

we note that GAE is trained using a reconstruction loss, which means it tends to assign

high confidence to existing edges. In other words, the neighbors retrieved by GAE would

be similar to those obtained through 1-hop neighbor retrieval, except for some low-degree

nodes.

Hyperparameter Study: Other Semantic Retrieval Options. This additional ex-

periment uses different semantic retrievers to replace the prototype-based semantic retriever

used in the proposed AuGLM. In detail, the prototype-based semantic retrieval module is

replaced with a simple semantic retriever that selects the most textually similar nodes

via inner product. Concretely, we use two pretrained models, (1) original all-MiniLM-L6-v213

13https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Table 4.27: Accuracy (%) of AuGLM with different semantic retrieval techniques across
datasets. The best result for each dataset is bolded.

Retrieval Technique Cora Pubmed ogbn-arxiv ogbn-products

Simple semantic retriever 90.68 94.37 74.46 81.21
SimTeG-tuned simple retriever — — 74.70 —
Prototype-based retriever (ours) 91.14 94.80 75.39 81.73

and (2) fine-tuned all-MiniLM-L6-v2 by SimTeG [282]14. The remaining modules, including

topological retrieval and classifier guidance, were left intact, and FLAN-T5-small is used as

the LM backbone. The results are reported below.

We observe that the proposed prototype-based retriever is better than both the original

all-MiniLM-L6-v2-based retriever and the SimTeg-tuned simple retriever. This is because:

1. The training objective of the SimTeG-tuned retriever is to align the classification loss

with a GNN model [282], similar to knowledge distillation [283]. In other words, the

SimTeG-tuned retriever is a mixture of topological and semantic retrieval,

as the GNN incorporates both topology and node features. This means that its role

partially overlaps with that of the topological PPR retriever.

2. Our prototype-based retriever can retrieve textual features from multiple nodes, but

the other two cannot achieve this.

Selected Hyperparameters. We report the hyperparameter used for every dataset in

Table 4.28. As mentioned in the main content, we use two pretrained all-MiniLM-L6-v2

models as the dual encoder and the Flan-T5-small/base/large models as the backbone; they

are all publicly available1516. More detailed hyperparameters will be released with the code

upon publication.

4.3.5 Architecture and Training of the Graph Neural Network ψ

In our setting, semi-supervised node classification problem, V , E , T ,Ytrain are available

during training. Since Graph Neural Networks (GNNs) are not inherently capable of pro-

cessing textual features, a pretrained text encoder is used to generate d-dimensional dense

14https://huggingface.co/datasets/vermouthdky/SimTeG/tree/main/ogbn-arxiv/

all-MiniLM-L6-v2/main/cached_embs
15https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
16https://huggingface.co/docs/transformers/en/model_doc/flan-t5
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Table 4.28: Selected hyperparameters for AuGLM across different datasets.

Hyperparameter Cora Pubmed ogbn-arxiv ogbn-products

# PPR neighbors 5 2 5 5

# Semantic neighbors 5 2 5 5

Prompt template Citation Citation Citation, Title Last Amazon

# Candidate labels 3 2 3 3

LM learning rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Retriever learning rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Weight decay 0 0 0 0

embeddings for each node

Encoderψ1(ti) = h
(0)
i ∈ Rd, ∀i ∈ 1, . . . , n (4.112)

In our implementation, the text encoder is all-MiniLM-L6-v2, a member of the Sentence

Transformers. Subsequently, we apply a standard graph neural network. In this paper,

GraphSAGE [256] is used whose iterative architecture is

h
(l)
i = σ(l)

(
MEAN

(
{h(l−1)

i } ∪ {h(l−1)
j : (vi, vj) ∈ E}

)
·W(l)

)
(4.113)

where σ(l) is the activation function and W(l) ∈ Rd×d is the learnable parameter of each

layer. For an L-layer network, in the last layer, σ(L) is softmax and W(L) ∈ Rd×c so that

h
(L)
i ∈ Rc is the prediction vector. The typical loss used for training the GNN is negative

log-likelihood LNLL(h
(L)
i , yi) for all the nodes in the training set Ytrain. The complete set of

trainable parameters is denoted as ψ = {ψ1} ∪ {W(l)}Ll=1.

4.3.6 Interpretation of the Distribution Matching Loss

We recap the objective function. For notation brevity, we use ti to denote the input target

node with its pruned candidates: (ttarget, tcandidates):

KL(p̃LM(·|ti, yi)∥pϕ(·|ti)) (4.114)
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where the stop gradient operator is removed if we only compute the gradient concerning ϕ

and

pϕ(tj|ti) =
exp(sϕ(ti, tj))∑
tk∈D exp(sϕ(ti, tk))

(4.115)

and

p̃LM(tj|ti, yi) =
exp(pLM(yi|ti, tj))∑
k∈Ni

exp(pLM(yi|ti, tk))
(4.116)

For notation brevity, we replace
∑

tk∈D with
∑

z if there is no ambiguity. Then

min
ϕ

KL
(
p̃LM(·|ti, yi)∥pϕ(·|ti)

)
⇔ min

ϕ
−
∑
z

p̃LM(z|ti, yi) log[pϕ(z|ti)] (4.117)

= −
∑
z

p̃LM(z|ti, yi) log
[

esϕ(z,ti)∑
z′ e

sϕ(z′,ti)

]
(4.118)

=
∑
z

p̃LM(z|ti, yi) log

[∑
z′

esϕ(z
′,ti)

]
−
∑
z

p̃LM(z|ti, yi)sϕ(z, ti)

(4.119)

= log

[∑
z

esϕ(z,ti)

]
−
∑
z

p̃LM(z|ti, yi)sϕ(z, ti) (4.120)

Hence,

∇KL =

∑
z e

sϕ(z,ti)∇sϕ(z, ti)∑
z′ e

sϕ(z′,ti)
−
∑
z

p̃LM(z|ti, yi)∇sϕ(z, ti) (4.121)

=
∑
z

[pϕ(z|ti)− p̃LM(z|ti, yi)]∇sϕ(z, ti) (4.122)

=
∑
z

[
1− p̃LM(z|ti, yi)

pϕ(z|ti)

]
pϕ(z|ti)∇sϕ(z, ti) (4.123)

After changing the notation back from
∑

z to
∑

tk∈D, we have

∇KL =
∑
tk∈D

[
1− p̃LM(tj|ti, yi)

pϕ(tj|ti)

]
pϕ(tj|ti)∇sϕ(tj, ti) (4.124)

whose rationale is that if the LM’s feedback greatly prefers the neighbor vj (and its associated

text tj), larger than its probability to be retrieved by the retriever (i.e.,
p̃LM(tj |ti,yi)
pϕ(tj |ti)

> 1), then

the similarity score between ti and tj will increase, i.e., improve the probability of tj to be
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Table 4.29: Templates used for all datasets.

Template Name Prompt Text

Citation
(Cora, Pubmed, ogbn-arxiv)

Please classify the following paper into

{pruned label candidates} based on the provided

information\nTitle: {target node’s title}\nContent:
{target node’s abstract}\nRelated papers: {retrieved
nodes’ titles}

Citation, Title Last
(Cora, Pubmed, ogbn-arxiv)

Please classify the following paper into

{pruned label candidates} based on the

provided information\nContent: {target node’s

abstract}\nRelated papers: {retrieved nodes’

titles}\nTitle: {target node’s title}

Amazon
(ogbn-products)

Please classify the following Amazon product

into {pruned label candidates} based on the

provided information\nProduct name: {target
node’s title}\nDescription: {target node’s

description}\nRelated products: {retrieved nodes’

titles}

Amazon, Title Last
(ogbn-products)

Please classify the following Amazon product

into {pruned label candidates} based on the

provided information\nDescription: {target node’s

description}\nRelated products: {retrieved nodes’

titles}\nProduct name: {target node’s title}

retrieved.

4.3.7 Templates

Table 4.29 presents templates used in this paper. We design the “Citation” template

for the Cora, Pubmed, and ogbn-arxiv datasets and the “Amazon” template for the ogbn-

products dataset.

Drawing inspiration from the findings of [267], who demonstrated the efficacy of position-

ing the title after the main content for particular datasets, we have also introduced two

additional template variations: “Citation, Title Last” and “Amazon, Title Last.”
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CHAPTER 5: GRAPH DISTILLATION

5.1 KERNEL RIDGE REGRESSION-BASED GRAPH DATASET DISTILLATION

5.1.1 Introduction

Graph datasets are indispensable parts of any graph machine learning and graph mining

tasks ranging from fraud detection on financial systems [284], and fake account detection

on social networks [48], to drug discovery in bioinformatics [285]. Graph neural networks

(GNNs), as a family of powerful graph machine learning tools, are becoming critical modules

in many graph machine learning systems due to their flexibility and strong expressiveness.

However, similar to other neural network methods, training GNNs with higher model

expressiveness usually requires graph datasets with increasing volume [30, 286] and accord-

ingly more intensive computation resource consumption. This limitation naturally leads to

a question: How can we find small, synthetic yet informative datasets to train GNNs with a

competitive performance against GNNs trained on large graph datasets?

The inquiry into the above question has incubated an emerging area named dataset dis-

tillation (DD) [287, 288] or dataset condensation (DC) [289]. The core idea of the existing

DD or DC methods is to approach the problem under the umbrella of meta-learning and

formulate it as a bilevel optimization problem [290]. Specifically, their lower-level problems

have training objectives of fitting the synthetic datasets, while the upper-level optimization

aims to find the proper synthetic datasets. A variety of settings have been explored for the

upper-level problem. For example, Wang et al. [287] set the upper-level problem as the vali-

dation loss over the given large dataset; Zhao et al. [289] design a gradient matching loss as

the upper-level problem between the gradients on the original dataset and on the synthetic

dataset.

The vast majority of the existing works on DD or DC are for tabular data and image

data. DD/DC on graph datasets has not been well-studied due to the complex graph struc-

ture. To the best of our knowledge, the only graph-level (i.e., a graph is viewed as a data

point) dataset distillation work is DosCond [45], which adopts the aforementioned gradient

matching strategy [289]. To overcome the huge computation cost for solving the bilevel

optimization problem, DosCond [45] proposes a fast but aggressive approximation of the

gradient matching loss [289], which only matches the gradients of graph classifiers at ini-

tialization. Therefore, there exists unexplored space for performance improvement from the

inexact solution of the distillation objective, which is one of our main foci.
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Different from previous works, this paper aims to obtain the exact solution of the bilevel

dataset distillation objective while maintaining computational tractability. To avoid the

heavy computation of the bi-level optimization problem, we select kernel ridge regression

(KRR) as the classifier whose prediction has a closed form. For implementing KRR on

graph-level tasks, a graph kernel is required. Our work selects the recent graph neural

tangent kernel (GNTK) [291] for the KRR graph classifier because GNTK describes the

training dynamics of GNNs [291]. We name the proposed method Kernel ridge regression-

based graph Dataset Distillation (KiDD).

However, due to the inevitable computational intensity of GNTK, naively connecting it

with KRR results in low efficiency. To obtain a practically efficient dataset distillation

method, we propose a series of novel enhanced designs. A simplified version of GNTK,

LiteGNTK, is developed by removing non-linear activations at specific layers. This LiteG-

NTK can avoid heavy matrix multiplications during the iterative update of the synthetic

graphs. By exploiting the close relationship between LiteGNTK and random walk graph ker-

nel [292, 293], we further propose a fast low-rank KiDD variant (KiDD-LR) that boosts the

efficiency further. To handle cases where discrete graph topology is required, another variant

namedKiDD-D is proposed by applying the Gumbel-Max reparameterization trick [294, 295]

into our fully differentiable model KiDD.

In comprehensive experiments, our KRR-based model KiDD shows very strong empirical

performance over 7 real-world datasets compared with the state-of-the-art methods. In

addition, the efficiency study shows our proposed KiDD enjoys comparable efficiency to

DosCond, an approximate solver of the distillation objective.

5.1.2 Problem Definition

This section introduces the main notations used throughout this paper. After that, a brief

introduction to graph neural networks (GNNs) and graph neural tangent kernel (GNTK) is

presented. Then, a formal problem definition is provided.

Notations. We use bold letters for matrices (e.g., A) and column vectors (e.g., u). We

use [] as the indices of matrices/vectors. E.g., A[i, j] represents the entry of matrix A at

the i-th row and j-th column. Superscript ⊤ denotes the transpose of matrices/vectors. We

use appropriate subscripts to denote the properties of nodes, graphs, and a set of graphs.

For example, hu is the representation of node u, VG is the node set of the graph G, and yT

is the labels of a graph set T . All the synthetic/distilled graphs and their components are

accented with tildes. For example, we notate a synthetic graph as G̃ = {Ã, X̃} where Ã and
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X̃ are its adjacency matrix and node feature matrix, respectively.

Graph Neural Network. The primary operations of GNNs are as follows.

A - Aggregate. To update the node representation of node u, the representations of node

u’s neighbors are aggregated by the aggregate function. A typical aggregate function, the

summation (with a re-scaling factor of the node u, cu), is hu ← cu
∑

v∈Nu∪{u} hv, where the

common choice of Nu is u’s 1-hop neighbors.

B - Update. The representation of a node u can be updated by the update function. A simple

example is a fully-connected layer with element-wise non-linearity σ (e.g., ReLU [296]) as

hu ← 1√
m
σ(Whu), where the m is the output dimension of the Whu.

C - Readout. For the graph-level tasks, the graph representation is aggregated over all the

nodes in a graph G by the readout function. A typical readout function, the summation,

is hG =
∑

v∈VG
hv.

GNN variants on graph-level tasks are usually composed of multiple aggregate and

update operations and end with an readout operation.

Graph Neural Tangent Kernel. Graph neural tangent kernel (GNTK) [291, 297] is a

graph kernel that describes infinitely wide multi-layer GNNs trained by gradient descent

through the squared loss. Concretely, the tangent kernel of a GNN f is presented as

Kθ(G,G ′) =
〈
∂f(θ,G)
∂θ

,
∂f(θ,G ′)

∂θ

〉
, (5.1)

where θ denotes the set of trainable parameters of the GNN. If the width of the GNN is

infinite (i.e., m→∞) and every trainable parameter is an i.i.d. Gaussian random variable,

the expectation of the above tangent kernel can be explicitly computed as KGNTK(G,G ′) [291]
and it is named GNTK. Du. et al [291] provide a recipe to translate the computation of

GNN on node representations from a graph G into the computation of GNTK on a node

covariance matrix from a pair of graphs G and G ′.
Given the graph pair G and G ′ with their node sets VG and VG′ , for a pair of nodes u ∈ VG

and u′ ∈ VG′ , if we slightly abuse the u and u′ as the indices of the matrix, the initial

covariance matrix ΣG,G′ and the initial GNTK matrix ΘG,G′ can be computed as

ΣG,G′ [u, u′] = ΘG,G′ [u, u′] = x⊤
u xu′ , (5.2)

where x is the raw node feature. Then, the aggregate operation is translated by the GNTK
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recipe as

ΣG,G′ [u, u′]← cucu′
∑

v∈Nu∪{u}

∑
v′∈Nu′∪{u′}

ΣG,G′ [v, v′] (5.3a)

ΘG,G′ [u, u′]← cucu′
∑

v∈Nu∪{u}

∑
v′∈Nu′∪{u′}

ΘG,G′ [v, v′] (5.3b)

The update operation is translated in the following steps

ΛG,G′ [u, u′] =
(ΣG,G[u, u] ΣG,G′ [u, u′]

ΣG′,G[u
′, u] ΣG′,G′ [u′, u′]

)
, (5.4a)

Σ̇G,G′ [u, u′] = E(a,b)∼N (0,ΛG,G′ [u,u′])σ̇(a)σ̇(b), (5.4b)

ΣG,G′ [u, u′]← E(a,b)∼N (0,ΛG,G′ [u,u′])σ(a)σ(b), (5.4c)

ΘG,G′ [u, u′]← ΘG,G′ [u, u′]Σ̇G,G′ [u, u′] +ΣG,G′ [u, u′], (5.4d)

where σ̇(·) is the derivative of ReLU. Finally, the readout operation is translated as follows,

which computes the final GNTK value between the graph pair G and G ′

KGNTK(G,G ′) =
∑

u∈VG ,u′∈VG′

ΘG,G′ [u, u′]. (5.5)

To compute the Eq. (5.4b) and Eq. (5.4c) exactly, according to [291, 298], the following

properties of the ReLU activation function should be used. If Λ̃ =
(1 λ

λ 1

)
,

E(a,b)∼N (0,Λ̃)σ(a)σ(b) =
λ(π − arccos(λ)) +

√
1− λ2

2π
, (5.6a)

E(a,b)∼N (0,Λ̃)σ̇(a)σ̇(b) =
π − arccos(λ)

2π
. (5.6b)

Also, using the homogeneity of ReLU (i.e., for ∀a ≥ 0, σ(ax) = aσ(x), and σ̇(ax) = σ̇(x) we

can decompose the ΛG,G′ [u, u′] = DΛ̃D, where D =
(c1 0

0 c2

)
and get

E(a,b)∼N (0,DΛ̃D)σ(a)σ(b) = c1c2
λ(π − arccos(λ)) +

√
1− λ2

2π
, (5.7a)

E(a,b)∼N (0,DΛ̃D)σ̇(a)σ̇(b) =
π − arccos(λ)

2π
. (5.7b)
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Graph Dataset Distillation. In this paper, we study the dataset distillation problem for

graph classification tasks. Specifically, we aim to synthesize a small number of informative

graphs to empower the training of graph classifiers. The problem is formally defined as

follows.

Problem 5.1. Graph dataset distillation

Given: a set of target training graphs T = {(Gi, yi)}nT −1
0 .

Find: a set of synthetic training graphs S = {(G̃i, ỹi)}nS−1
0 such that the GNN trained over

S can obtain competitive performance with GNN trained over T .

The overall procedure is two-step. First, a distillation method (including a distillation

classifier, introduced in Section 5.1.3) is applied to synthesize S from T . Then, a down-

stream classifier is trained over S and reports its performance on a test set U which has no

overlap with S or T . The downstream classifier’s test performance is the metric of the dis-

tilled training set S, and in this paper, the downstream classifier is selected from graph-level

GNNs (e.g., GIN [299]) and will be introduced in detail in Section 5.1.4.

5.1.3 Proposed Method

This section introduces the objective formulation, the proposed model (KiDD), and the

corresponding enhancements.

Optimization Objective. An ideal distilled graph dataset S for the target graph dataset

T should minimize the following optimization objective.

min
S

|EUL(U , f(θ∗
S))− EUL(U , f(θ∗

T ))| , (5.8a)

s.t. θ∗
S = argmin

θ
L(S, f(θ)), (5.8b)

θ∗
T = argmin

θ
L(T , f(θ)), (5.8c)

where U is the test set sampled from the true graph distribution. The above formula suggests

the graph classifiers trained on the target dataset (i.e., f(θ∗
T ) from Eq.(5.8c)) and on the

synthetic dataset (i.e., f(θ∗
S) from Eq.(5.8b)) should have similar expected test loss (i.e.,

Eq. (5.8a)). Notice here the graph classifier f is for the distillation purpose, i.e., synthesizing

the dataset S. Thus, we name f as the distillation classifier in this paper. Naturally,

Eq. (5.8a) implies the best choice of the distillation classifier f should be the same as the

downstream classifier. That is because, if the downstream classifier is g, the test error

119



EUL(U , g(θ∗
S)) is minimized when f = g, considering (1) |T | ≫ |S| and (2) empirically,

EUL(U , f(θ∗
S)) ≥ EUL(U , f(θ∗

T )).

However, as the true graph distribution is not accessible, a feasible optimization goal is

to replace the unknown test set U with the large target training set T as follows.

min
S

|L(T , f(θ∗
S))− L(T , f(θ∗

T ))|, (5.9)

where θ∗
T and θ∗

S are from Eq. (5.8c) and Eq. (5.8b). As the θ∗
T is the minimizer over the

L(T , f(θ)), to minimize Eq. (5.9), our objective is equivalent to minimizing L(T , f(θ∗
S)).

The objective function can be re-written as follows,

min
S

L(T , f(θ∗
S)), (5.10a)

s.t. θ∗
S = argmin

θ
L(S, f(θ)), (5.10b)

which can be interpreted as finding a synthetic training set S such that the trained model

f(θ∗
S) over S has a small loss over the validation set T . The above objective is a bilevel

optimization problem [290] whose exact solutions [116, 150, 151, 300, 301, 302] is computa-

tionally expensive or even intractable, especially when the objective functions are not convex.

Thus, even though the best distillation classifier f is the downstream GNN classifier itself,

its non-convex optimization objective makes the distillation problem costly to be solved. In

this paper, we resort to a kernel-based method that renders a tractable and exact solution

to the above objective function.

Graph Kernel Ridge Regression. To avoid the expensive hyper-gradient computation

of the bilevel optimization problem, a strategy is that if the lower-level problem has a

closed-form solution, plugging the lower-level solution into the upper-level objective can

largely simplify the optimization objective [108, 303] into a single-level problem. Kernel

ridge regression (KRR) can yield such a closed-form solution. If f is instantiated as the

KRR and the squared loss is applied, the Eq. (5.10a) and Eq. (5.10b) can be instantiated as

min
S

LKRR =
1

2

∥∥yT −KT S(KSS + ϵI)−1yS
∥∥2 , (5.11)

where ϵ > 0 is a KRR hyper-parameter, KT S and KSS are the kernel matrices. E.g.,

KT S [i, j] = K(Gi, G̃j), KSS [i, j] = K(G̃i, G̃j), Gi ∈ T , G̃i, G̃j ∈ S with K as a specific kernel

function (e.g., random walk graph kernel [292, 293]). yT and yS are the concatenated graph

labels from T and S.
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However, there are two concerns about the above optimization objective. First (model

gap), in terms of expressive power and empirical performance, GNNs outperform most, if not

all, classic graph kernel methods on graph classification tasks [299]. It leads to a concern that

whether the graph dataset S distilled through the graph kernel-based kernel ridge regression

can empower the training of downstream GNNs. Second (informative distillation), as the

size of the distilled graph dataset is small, how to ensure the distilled graphs are sufficiently

informative to capture the critical information from the original training set.

As a response to the first concern and to bridge the gap between the distillation classifier

and the downstream GNN classifier, a recent graph kernel is adopted which is named graph

neural tangent kernel (GNTK) [291]. GNTK (1) measures the graph pair similarity by

mapping a graph into an infinite-dimensional GNN gradient vector and (2) describes the

training dynamics of the corresponding GNN. Thus, GNTK-based kernel ridge regression

is promising to distill generalizable graph datasets for downstream GNN classifiers. The

specific computation of GNTK is introduced in Section 5.1.2.

As a response to the second concern and to ensure informative distilled graphs, we propose

a distillation regularization term as

Lreg =
∥∥∥K̂SS − I

∥∥∥2
F
. (5.12)

The final objective L is the weighted sum of LKRR and Lreg as

min
S

L = LKRR + γLreg. (5.13)

K̂SS is the normalized kernel matrix between synthetic graphs whose entry K̂SS [i, j] =
KSS [i,j]√

KSS [i,i]
√

KSS [j,j]
. γ is a hyper-parameter to trade-off the KRR classification loss LKRR and

the regularization loss Lreg. The key idea of Lreg is to force the normalized kernel matrix

K̂SS to be an identity matrix so that the synthetic graphs are more orthogonal to each other

in the kernel space.

Given the optimization objective as Eq. (5.13) shows, the gradient of the objective with

respect to the graphs from S are computed, i.e., ∂L
∂G̃i
, ∀G̃i ∈ S. We provide some details

here. First, in our implementation, we compute the gradient with respect to the graph

adjacency matrix Ã and node feature matrix X̃ for all the graphs from S = {(G̃i, ỹi)}nS−1
0 .

Second, any gradient-based optimizer can be applied, e.g., Adam [304]. Third, the synthetic

set S can be initialized by sampling the target set T or fully initialized randomly. In this

work, we initialize the synthetic set S by sampling T . We name our proposed graph dataset

distillation method KiDD. Next, we present the enhancements designed for KiDD to
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improve its efficiency greatly and handle discrete graph structures.

Model Enhancements. The existing computation of GNTK [291] is still expensive, espe-

cially for our gradient descent-based dataset distillation scenario. That is because, in every

iteration, the kernel matrices KSS and KT S need to be re-computed. Additionally, it is non-

trivial to synthesize discrete graph topology by the gradient descent-based method, which is

required in certain cases. This section introduces several enhancements that systematically

improve KiDD’s computational feasibility and functionality.

LiteGNTK. As we introduced in Section 5.1.2, Du. et al [291] provides a recipe to trans-

late a specific instantiation of GNN into its corresponding GNTK. The GNTK used in the

existing literature [291] is based on the typical GNNs with a non-linear activation function

at every layer (e.g., GCN [20] and GIN [299]). Hence, every layer of their corresponding

GNTK instantiations contains a translated update operation (i.e., Eq. (5.4a)-(5.4d)). Re-

cently, extensive empirical studies on GNNs show that non-linearity is not a necessity for

every GNN layer, and removing the non-linearity from the last several layers can speed up

the computation [22] without sacrificing or even improving the model performance [305].

Thus, we propose to remove the update operation from all the GNTK layers except the first

one and use the following LiteGNTK for our kernel ridge regression-based graph dataset dis-

tillation. Given two graphs G = {A,X} and G̃ = {Ã, X̃}, the LiteGNTK KLiteGNTK between

this graph pair is computed as

ΣG,G̃ = ΘG,G̃ = XX̃⊤, (5.14a)

ΣG,G̃,ΘG,G̃ ← GNTK-update
(
ΣG,G̃,ΘG,G̃

)
, (5.14b)

ΘG,G̃ ← (cGc
⊤
G̃ )⊙

(
AkΘG,G̃(Ã

⊤)k
)
, (5.14c)

KLiteGNTK(G, G̃) =
∑
u,ũ

ΘG,G̃[u, ũ], (5.14d)

where ⊙ is the Hadamard product; GNTK-update is an alias of Eq. (5.4a)-(5.4d); cG =

vec({cku|u ∈ G}) is the scaling vector whose elements are the k-powered re-scaling factor

of every node from G; cG̃ is constructed similarly by the nodes from G̃. Finally, the kernel

value between the graph G and G̃ are computed by the Eq. (5.14d) which is the same as the

GNTK readout function. LiteGNTK is used for all our proposed distillation models.

Advantages of LiteGNTK. First, the original GNTK [291] contains non-linearity in each of

the k layers, which requires the computation of AΘG,G̃Ã
⊤ for k times during every update

of the synthetic graphs. In comparison, for LiteGNTK, Ak and Ãk can be precomputed,
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especially for the As from the target dataset T which are not updated throughout the whole

distillation procedure. Second, the LiteGNTK is closely related to the random walk graph

kernel [292, 293], which is shown in our following proposition. As both LiteGNTK and

random walk graph kernel include power iterations of adjacency matrices, this reveals the

possibility to develop a faster LiteGNTK in light of the speedup of the random walk graph

kernel.

Proposition 5.1. LiteGNTK is a generalized instantiation of the random walk graph ker-

nel [292, 293].

Proof. Random walk graph kernel (RWK) counts the number of length-k common paths

between graph G and G̃ as

KRWK

(
G, G̃

)
= (q⊗ q̃)⊤

(
A⊗ Ã

)k
(p⊗ p̃) , (5.15)

where p (p̃) and q (q̃) are the starting and stopping probability vectors of graph G (G̃).
Thus, Eq. (5.15) can be written as

KRWK =
(1)

(q⊗ q̃)⊤(A⊗ Ã)(k−1)vec
(
A
(
vec−1(p⊗ p̃)

)
Ã⊤
)
, (5.16a)

=
(2)

(q⊗ q̃)⊤vec
(
Ak(pp̃⊤)(Ã⊤)k

)
, (5.16b)

=
(3)

q⊤Ak(pp̃⊤)(Ã⊤)kq̃, (5.16c)

=
(4)

∑
u,ũ

(
(qq̃⊤)⊙

(
Ak(pp̃⊤)(Ã⊤)k

))
[u, ũ], (5.16d)

where ⊗ is the Kronecker product, ⊙ is the Hadamard product, vec is the vectorization

operator, and vec−1 is the inverse operator of vec (i.e., reshaping a vector into a matrix).

Note here the vec and vec−1 follow the row-first order as many scientific computing packages

do (e.g., PyTorch’s reshape function). The above step (1), (2), and (3) are based on the

property of the Kronecker product: (A⊗B)v = vec
(
A
(
vec−1(v)

)
B⊤
)
. Step (4) is because

v⊤Av =
∑

i,j v[i]A[i, j]v[j] =
∑

i,j v[i]v[j]A[i, j] =
∑

i,j

(
(vv⊤)⊙A

)
[i, j]. Here, the matrix

pp̃⊤ describes the node pair co-starting probability from graphs G and G̃ which can be

generalized as the GNTK-updated node pair co-variance matrix ΘG,G̃ from Eq. (5.14b). The

matrix qq̃⊤ is a node pair co-stopping probability matrix which can be generalized as the

node pair weighting matrix cGc
⊤
G̃ from Eq. (5.14c). Thus, we conclude that the LiteGNTK

KLiteGNTK is the generalization of the random walk graph kernel KRWK. QED.
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Low-Rank Speed-Up. Proposition 5.1 reveals the connection between the random walk

graph kernel and the LiteGNTK, which inspires us to apply the fast strategy [293] proposed

for the random walk graph kernel into the computation of LiteGNTK. Real-world graphs are

known for their intrinsic low-rank topology [100], which can significantly speed up the power

iterations of the adjacency matrices using their low-rank representations. To be specific,

for learning the topology of synthetic graphs, instead of optimizing the objective Eq. (5.13)

with respect to the synthetic graph’s adjacency matrix Ã, we directly optimize its low-rank

decomposed matrix Ũ, Ṽ ∈ Rn×r where r is the rank of the synthetic graphs.

Notice that in this paper, we retain the adjacency matrices of the original training graphs

G ∈ T and only learn the low-rank matrices of the synthetic graphs G̃ ∈ S. There are 2

reasons: (1) the original training graphs are the distillation target, whose topology infor-

mation should be kept intact; (2) the original training graphs are usually sparse but the

synthetic graphs could be dense due to the gradient descent update, which leads to heavy

computation (e.g., matrix multiplication). Since the KT S has much more entries than the

matrix KSS , in the following part, we analyze the computation of the kernel value between

G = {A,X} ∈ T and G̃ = {Ũ, Ṽ, X̃} ∈ S, i.e., an entry of the matrix KT S . For computing

entries of KSS , it can be analyzed similarly and is omitted for brevity.

Given G = {A,X} ∈ T and G̃ = {Ũ, Ṽ, X̃} ∈ S, to compute their corresponding LiteG-

NTK value, Eq. (5.14c) is modified as follows,

ΘG,G̃ ←
(
cGc

⊤
G̃

)
⊙
(
AkΘG,G̃

(
ṼŨ⊤

)k)
, (5.17)

while Eq. (5.14a), (5.14b), (5.14d) stay unchanged. The following lemma shows such a minor

change can greatly improve the model’s efficiency during both the forward computation and

the gradient backward propagation. Notice that the following analysis focuses on the com-

putation efficiency of the key operations containing the synthetic graph topology variables

Ũ and Ṽ.

Lemma 5.1. (Time Complexity) Assume both G and G̃ have n nodes, i.e., ΘG,G̃ ∈ Rn×n, the

time complexity of computing ΘG,G̃

(
ṼŨ⊤

)k
is O(rn2). The time complexity of computing

∂(ṼŨ⊤)k

∂Ũ
and ∂(ṼŨ⊤)k

∂Ṽ
is O(r3n3).

Proof. ΘG,G̃(ṼŨ⊤)k can be rewritten as ΘG,G̃Ṽ(Ũ⊤Ṽ)k−1Ũ⊤. Thus, the complexity of com-

puting (Ũ⊤Ṽ)k−1 is O(rn2+(k−2)r3), the complexity of multiply ΘG,G̃, Ṽ, (Ũ⊤Ṽ)k−1, Ũ⊤

from the left-hand side is O(2rn2 + r2n). Hence, putting everything together the time com-

plexity of computing ΘG,G̃(ṼŨ⊤)k is O(3rn2 + r2n + (k − 2)r3) which can be shortened as

O(rn2) given r ≪ n and k ≪ n.
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∂(ṼŨ⊤)k

∂Ũ
= ∂Ṽ(Ũ⊤Ṽ)k−1Û⊤

∂Ũ⊤Ṽ
∂Ũ⊤Ṽ
∂Ũ

+ ∂Ṽ(Ũ⊤Ṽ)k−1Û⊤

∂Û
, where Û = Ũ. It is a fact that, for any

matrix M ∈ Rr×r

∂Mk[i, j]

∂M[s, t]
=
∂
∑

l1,...,lk−1
M[i, l1]M[l1, l2] . . .M[lk−1, j]

∂M[s, t]
,

=

(
k−1∑
l=0

Ml ⊗ (M⊤)k−1−l

)
[ri+ j, rs+ t].

(5.18)

Thus, if we represent ∂(Ũ⊤Ṽ)k−1

∂Ũ⊤Ṽ
in the shape of Rr2×r2 it can be computed as

∑k−2
l=0 (Ũ

⊤Ṽ)l⊗
(Ṽ⊤Ũ)k−2−l whose time complexity is O((k − 1)(2r2n+ r4)). The time complexity of com-

puting ∂Ũ⊤Ṽ
∂Ũ

is O(r3n). The complexity of multiply ∂Ṽ(Ũ⊤Ṽ)k−1Û⊤

∂Ũ⊤Ṽ
and ∂Ũ⊤Ṽ

∂Ũ
is O(r3n3).

The time complexity of computing ∂Ṽ(Ũ⊤Ṽ)k−1Û⊤

∂Û
is O(rn3). Consequently, put everything

together, the time complexity of computing ∂(ṼŨ⊤)k

∂Ũ
is O(r3n3) given r ≪ n and k ≪ n.

The time complexity of computing
∂ΘG,G̃(ṼŨ⊤)k

∂Ṽ
can be analyzed similarly and is omitted

for brevity. QED.

As a comparison, without this low-rank speed-up technique, the time complexity of com-

puting ΘG,G̃Ã
k is O(kn3) and time complexity of computing ∂Ãk

∂Ã
is O(kn4) if Ã is a dense

matrix after gradient descent-based updating. Thus, considering r ≪ n, our proposed low-

rank variant can significantly speed up the computation. In addition, clearly, the space

complexity for storing every synthetic graph’s topology drops to O(2nr) if the low-rank

technique is applied; otherwise, it is O(n2).

Benefiting from the close connection between the random walk graph kernel and LiteG-

NTK, the following lemma gives an error bound on applying the low-rank technique to

LiteGNTK. For brevity, the lemma 5.2 only analyzes the case where synthetic graphs are

undirected (i.e., Ã is symmetric).

Lemma 5.2. (Error Bound) Given a target graph G = {A,X}, a synthetic graph G̃ =

{Ã, X̃} and G̃’s rank-r representation G̃r = {ŨŨ⊤, X̃}, if we assume both G and G̃ have n

nodes, G has m edges, and cG = cG̃ = cG̃r
= 1 are all-one vectors, the error of the LiteGNTK

value after applying the low-rank speed-up can be bounded by

KLiteGNTK(G, G̃)−KLiteGNTK(G, G̃r) ≤ nm
k
2 ||Θ||F

n∑
i=r+1

∣∣∣λ̃ik∣∣∣ , (5.19)

where Θ = ΘG,G̃ = ΘG,G̃r
is the output of Eq. (5.14b) and λ̃i is the i-th largest eigenvalue of

Ã.
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Proof. The difference between KLiteGNTK(G, G̃) and
KLiteGNTK(G, G̃r) can be presented as∣∣∣c⊤G̃AkΘ(Ãk − (ŨŨ⊤)k)cG

∣∣∣
=

∣∣∣∣∣c⊤G̃AkΘ(
n∑

i=r+1

λ̃i
k
ũiũ

⊤
i )cG

∣∣∣∣∣
≤ ∥cG∥2∥cG̃∥2||A||

k
F∥Θ∥F

∥∥∥∥∥
n∑

i=r+1

λ̃i
k
ũiũ

⊤
i

∥∥∥∥∥
F

≤ nm
k
2 ∥Θ∥F

n∑
i=r+1

∣∣∣λ̃ik∣∣∣
(5.20)

where ũi is the i-th unit eigenvector of Ã, and the last inequality holds because (1) {ui} are
the normalized eigenvectors, and (2) ||

∑
i aiuiu

⊤
i ||F =

√
trace(

∑
i a

2
iuiu

⊤
i )

=
√∑

i a
2
i trace(uiu

⊤
i ) ≤

∑
i |ai|. The above bound can be further simplified by limiting

X̃, X, and Θ to special cases but we keep this form for generality. QED.

Our distillation model equipped with this low-rank speed-up technique is named KiDD-

LR, and a step-by-step algorithm to distill a graph dataset is presented in Algorithm 5.1. In

addition, as Lemma 5.2 shows, if the low-rank assumption of the synthetic graphs holds, the

proposed KiDD-LR still provides an exact solution; otherwise, it provides an approximate

solution.

Discrete Synthetic Graphs. Despite the great efficacy of our proposed low-rank speed-

up method, the synthetic graph topology ŨṼ⊤ is weighted and even needs clipping to

be non-negative in the inference phase. For the case where discrete unweighted graphs are

needed, i.e., all the entries all either 0 or 1, a discrete variant of our method is proposed. The

strategy is to model every pair of nodes as an independent Bernoulli variable [45, 54, 306]

(e.g., bu,v ∈ [0, 1]) such that Ã[u, v] ∼ Bernoulli(bu,v). As the sampling process is not

differentiable, we utilize the Gumbel-Max reparametrization trick [45, 294, 295], and the

adjacency matrix is computed as

Ã[u, v] = sigmoid((log δ − log(1− δ) + bu,v)/τ), (5.21)

where δ ∼ Uniform(0, 1), and τ is a temperature hyperparameter. If τ → 0, Ã[u, v] will be

binary. Then, instead of modeling graph topology by its adjacency matrix, we can describe it

by a corresponding Bernoulli parameter matrix B̃ whose entries are edge-existing Bernoulli
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variables, i.e., B̃[u, v] = bu,v. As the gradient ∂Ã[u,v]

∂B̃[u,v]
is well-defined, we can optimize B̃

in an end-to-end fashion by the gradient descent. During the inference phase, we can set

Ã[u, v] = 1 if sigmoid(bu,v) > 0.5; otherwise, Ã[u, v] = 0.

Our distillation model equipped with this Gumbel-Max technique is named KiDD-D.

Notice that even though we can apply a similar low-rank decomposition trick to decompose

the Bernoulli parameter matrix B̃ = ŨṼ⊤, it will not improve the model’s efficacy as we

introduced in the above subsection. That is because the efficiency improvement is mainly

from the re-ordering of the computation of the power iteration (i.e.,
(
ŨṼ⊤

)k
) which cannot

be applied to the power iteration of the sampled adjacency matrix (i.e.,
(
sample

(
ŨṼ⊤

))k
).

Mini-Batch. Recall that our optimization objective Eq. (5.11) includes two kernel matri-

ces KT S and KSS . The computation of every entry from KT S and the upper (or lower)-

triangle of KSS is independent with each other. In this way, if the computation complexity

of every entry from the kernel matrix is O(C), the total complexity of computing KT S and

KSS is O
((
nT nS + 1

2
n2
S
)
C
)
, which are resource-intensive for some large graph datasets.

Fortunately, KiDD and its variant are easy to mini-batch. Specifically, at every iteration,

a subset of T and a subset of S are sampled, and this part of S is updated by minimizing

Eq. (5.11) through gradient descent. This mini-batch technique is optional and can easily

be incorporated with any of the above designs. Our efficiency study experiment shows that

the mini-batch is especially important for our proposed KiDD-D and KiDD-LR.

Detailed Algorithms Detailed algorithms of KiDD-LR and KiDD-D are provided in

Algorithm 5.1 and Algorithm 5.2, respectively.

Algorithm 5.1: KiDD-LR

Input : a target graph dataset T = {(Gi, yi)}nT −1
0 , the size of the synthetic dataset

nS ;
Output: the synthetic dataset S;

1 initialization: sample nS graphs and their labels yi from the T as the initial S;
decompose adjacency matrices into their low-rank matrices (e.g., Ũi, Ṽi) by SVD.

2 while S is not converged do
3 compute KT S and KSS by Eq. (5.14a), (5.14b), Eq. (5.17), and Eq. (5.14d);

4 Update S = {Ũi, Ṽi, X̃i}nS−1
0 based on the gradient ∂L

∂S from Eq. (5.11);

5 end

6 clip {Ãi = ŨiṼ
⊤
i }

nS−1
0 to be non-negative;

7 return S = {Ãi, X̃i, yi}nS−1
0 .
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Algorithm 5.2: KiDD-D

Input : a target graph dataset T = {(Gi, yi)}nT −1
0 , the size of the synthetic dataset

nS ;
Output: the synthetic dataset S;

1 initialization: sample nS graphs and their labels yi from the T as the initial S;
initialize the Bernoulli parameter matrix B̃i of every synthetic graph according to
their adjacency matrix: B̃i[u, v] = C if Ãi[u, v] = 1; otherwise B̃i[u, v] = −C,
where C is a constant, e.g., 1.

2 while S is not converged do

3 Sample adjacency matrices of synthetic graphs {Ãi}nS−1
0 by Eq. (5.21) and

{B̃i}nS−1
0 ;

4 compute KT S and KSS by Eq. (5.14a)-(5.14d);

5 Update S = {B̃i, X̃i}nS−1
0 based on the gradient ∂L

∂S from Eq. (5.11);

6 end

7 Discretize the adjacency matrix of every synthetic graph: Ãi[u, v] = 1 if

sigmoid(B̃i[u, v]) > 0.5, else Ãi[u, v] = 0;

8 return S = {Ãi, X̃i, yi}nS−1
0 .

5.1.4 Experiments

Table 5.1: Performance comparison (mean±std). The best and second-best results are bold
and underlined, respectively.

Name Graphs/Cls Ratio Random Herding K-Center DosCond KiDD-D KiDD-LR All data

NCI1
(ACC)

1 0.06% 57.4±3.0 59.2±3.0 59.2±3.0 57.1±0.9 60.1±0.9 60.3±1.6

80.0±1.110 0.61% 59.9±2.0 62.8±0.9 59.1±0.8 60.8±0.9 61.7±1.3 63.3±1.6

50 3.04% 60.5±2.1 62.5±2.0 59.5±0.5 62.7±0.8 64.2±0.6 62.2±0.8

NCI109
(ACC)

1 0.06% 54.3±2.3 51.7±0.9 51.7±0.9 54.9±2.3 55.2±2.7 54.4±1.0

77.7±0.610 0.61% 61.9±1.6 63.6±0.3 52.9±1.7 61.4±1.5 63.5±0.5 62.8±0.7

50 3.03% 64.0±1.4 64.7±1.2 55.0±2.1 62.9±1.6 70.4±1.3 64.7±1.0

PROTEINS
(ACC)

1 0.22% 57.8±1.8 67.6±1.7 67.6±1.7 63.4±1.9 68.8±3.9 69.3±4.9

78.6±2.610 2.25% 67.2±0.7 68.3±1.0 71.4±3.3 71.7±0.4 74.1±1.9 75.3±0.4

50 11.24% 69.6±4.0 70.1±1.0 72.9±2.6 73.2±0.8 75.0±1.9 75.6±2.3

DD
(ACC)

1 0.21% 61.3±8.5 60.7±8.4 61.0±3.2 63.0±0.7 65.8±1.7 69.7±1.0

76.9±3.210 2.12% 66.8±2.1 67.4±0.7 66.2±2.4 68.1±1.8 70.6±1.3 71.1±0.8

50 10.62% 71.4±2.2 71.6±1.9 72.3±1.0 70.9±1.0 73.1±2.2 71.7±0.7

molhiv
(ROC-AUC)

1 <0.01% 0.555±0.036 0.633±0.025 0.633±0.025 0.612±0.025 0.633±0.016 0.637±0.069

0.750±0.00710 0.06% 0.579±0.012 0.621±0.009 0.630±0.013 0.647±0.031 0.675±0.054 0.654±0.019

50 0.30% 0.623±0.013 0.616±0.014 0.628±0.014 0.620±0.018 0.708±0.062 0.709±0.020

molbbbp
(ROC-AUC)

1 0.12% 0.579±0.025 0.628±0.012 0.628±0.012 0.584±0.030 0.628±0.011 0.623±0.006

0.650±0.01410 1.23% 0.556±0.003 0.625±0.002 0.596±0.016 0.621±0.013 0.644±0.011 0.631±0.015

50 6.13% 0.610±0.007 0.630±0.013 0.595±0.018 0.628±0.012 0.662±0.030 0.663±0.016

molbace
(ROC-AUC)

1 0.17% 0.638±0.009 0.546±0.038 0.546±0.038 0.667±0.021 0.693±0.016 0.698±0.014

0.727±0.01710 1.65% 0.649±0.017 0.561±0.041 0.658±0.016 0.694±0.018 0.748±0.020 0.717±0.012

50 8.26% 0.655±0.020 0.703±0.012 0.662±0.013 0.710±0.006 0.766±0.007 0.724±0.020
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Datasets. In this paper, we select 7 real-world graph classification datasets including

NCI1, NCI109, DD, and PROTEINS from TUDataset [286] and ogbg-molhiv, ogbg-molbbbp,

and ogbg-molbace from open graph benchmarks [30]. For NCI1, NCI109, DD, and PRO-

TEINS, 80/10/10% of the graphs from every dataset are randomly split into the training/-

validation/test set. For ogbg-molhiv, ogbg-molbbbp, and ogbg-molbace, we use their default

dataset split. The detailed dataset statistics are provided in Table 5.2.

Table 5.2: Dataset statistics.

Name # Graphs # Nodes # Edges # Features # Classes

NCI1 4110 29.9 32.3 37 2
NCI109 4127 29.7 32.1 38 2

PROTEINS 1113 39.1 72.8 4 2
DD 1178 284.3 715.7 89 2

ogbg-molhiv 41127 25.5 54.9 9 2
ogbg-molbbbp 2039 24.1 51.9 9 2
ogbg-molbace 1513 34.1 73.7 9 2

Metrics. We select GIN [299] as the downstream GNN, which is trained on the distilled

graph dataset S. Its performance on the test graphs is the metric of the corresponding

distilled training graphs. To be specific, for NCI1, NCI109, DD, and PROTEINS, accuracy

(ACC) is reported and for ogbg-molhiv, ogbg-molbbbp, and ogbg-molbace ROC-AUC is

reported as the datasets suggested. We report the average result and the standard deviation

in 10 runs.

Baseline Methods. We select 4 baseline methods including 3 core-set methods (Ran-

dom, Herding [307], and K-Center [308, 309]) and a graph dataset distillation method

DosCond [45]. Concretely, Random selection is the most naive method which randomly

samples S from T . For Herding and K-Center, we first learn the representation of every

training graph by the GIN [299] trained on the whole training set. Then, Herding selects the

closest samples to the cluster center of every class. K-Center selects the center samples such

that the distance between every node to its nearest center is minimized. Specifically, we im-

plement a greedy solution of K-Center [310] whose initialized set is from Herding. DosCond

is a learning-based graph dataset distillation method that matches the training gradient on

S and T at the initialization step. DosCond is fast, but unlike the exact solution adopted

in KiDD, it applies bold approximations for the bi-level distillation objective function.
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Implementation of KiDD. In our implementation of KiDD, LiteGNTK is applied to

all the graph kernel computations. KiDD-LR is the variant that uses the proposed low-rank

speed-up designs, and KiDD-D is the variant that uses the Gumbel-Max trick to synthesize

discrete graph topology. Mini batch is flexibly applied depending on the size of the target

dataset. The code is provided1.

Effectiveness of KiDD-LR and KiDD-D. For every dataset, 1/10/50 graphs are dis-

tilled for every class by baselines and our methods, respectively. After that, the downstream

graph classifier GIN [299] is trained on the distilled training graphs, and we report its perfor-

mance on the test graphs in Table 5.1. The rightmost column shows the test performances

of the downstream classifiers trained on the entire original training sets. The effectiveness

comparison is provided in Table 5.1. It is observed that

• In most cases, as expected, with the increasing number of training graphs, the down-

stream graph classifier’s performances are improved. This observation is consistent

among both the coreset methods (Random, Herding, K-Center) and learning-based

distillation methods (DosCond, KiDD-D, and KiDD-LR).

• Interestingly, in some cases (e.g., DD), Random is not always the weakest baseline

method, even though it is the most naive one. It reflects that the most representative

training samples could be hard to find by heuristics (e.g., Herding, K-Center) and shows

the advantages of the learning-based methods (DosCond, KiDD-D, and KiDD-LR).

• The proposed KiDD-D and KiDD-LR obtain the best performance against all the

baseline methods under most settings. Strikingly, on ogbg-molbbbp and ogbg-molbace

datasets, when the numbers of synthetic graphs are only 1.65%-8.26% of the training

graphs, the graph classifiers trained on such tiny datasets are able to outperform the

correspondences trained on the complete datasets. It further demonstrates the advan-

tage of learning a representative and informative training set over directly sampling

the representative ones from the existing training graphs.

Efficiency Study. We first verify the efficiency improvement of our proposed enhanced

designs. Specifically, we measure the wall clock time during the forward computation and

backward gradient propagation (implemented with PyTorch). 3 models are compared: (1)

KiDD-GNTK: using GNTK as the kernel but not our proposed LiteGNTK; (2) KiDD-

LiteGNTK: using LiteGNTK as the graph kernel; (3) KiDD-LiteGNTK-LR: using LiteG-

NTK as the graph kernel and applying the low-rank speed-up technique whose rank is set

1https://github.com/pricexu/KIDD
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Table 5.3: Efficiency comparison (second/iteration) of KiDD with different kernels. BT , BS
are the batch sizes of the target and synthetic training sets, respectively.

(BT , BS) Computation GNTK LiteGNTK LiteGNTK-LR

(32, 2)
Forward 0.0475 0.0153 0.0071
Backprop 0.0241 0.0078 0.0040

(64, 2)
Forward 0.0697 0.0212 0.0111
Backprop 0.0251 0.0094 0.0045

(128, 16)
Forward 0.2004 0.0551 0.0288
Backprop 0.1525 0.0433 0.0173

(256, 32)
Forward OOM 0.1341 0.0745
Backprop OOM 0.1450 0.0633

as 16 in this experiment. All the graph neural network kernels have 5 aggregate operations.

For KiDD-GNTK and KiDD-LiteGNTK, they do not include the Gumbel-Max reparame-

terization trick because it is not proposed for better training efficiency, and in addition, it

is an element-wise operation (i.e., Ã[u, v] = Gumbel-Max
(
B̃[u, v]

)
) whose computation is

not heavy. In this experiment, the dataset PROTEINS is used. We test four settings with

different batch sizes of the target training graphs T and the synthetic graphs S. The wall

clock time comparison is presented in Table 5.3 from which we observe that

• KiDD-LiteGNTK is significantly faster (3× faster) than KiDD-GNTK as expected

because the non-linearity between aggregation operations is removed, and the aggre-

gation operations (i.e., Ak) can be precomputed. Also, as GNTK contains more op-

erations involving more intermediate variables for modern machine learning packages

(e.g., PyTorch) that leads to heavier memory usage. E.g., for the case with batch size

(256, 32), KiDD-GNTK is out of memory.

• KiDD-LiteGNTK-LR is much faster than KiDD-LiteGNTK, which aligns well with

the Lemma 5.1.

Next, we compare the wall clock time of KiDD-D and KiDD-LR compared with the

learning-based graph dataset distillation method DosCond, which applies a fast approxima-

tion of the bilevel gradient matching loss. As the forward and backward computation of

DosCond is not clearly defined, whose forward computation of the gradient matching loss

involves a gradient backpropagation, we record and compare the total training time for a

fixed number of iterations. As the official implementation of Doscond 2 applies mini batch

towards the target training set T while updating S in a full-batch fashion. For a fair com-

parison, we follow their settings and set all the methods’ batch size of T as 64, the batch

2https://github.com/amazon-science/doscond
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Table 5.4: Efficiency comparison (second/iteration) with the baseline method DosCond.

Dataset Method
Graphs/Class

1 10 50

NCI1
DosCond 0.6755 0.6804 0.7009
KiDD-D 0.0255 0.0463 0.1540
KiDD-LR 0.0122 0.0240 0.0826

PROTEINS
DosCond 0.2027 0.2077 0.2112
KiDD-D 0.0323 0.0608 0.2095
KiDD-LR 0.0157 0.0313 0.1090

ogbg-molhiv
DosCond 0.0274 0.0311 0.0328
KiDD-D 0.0281 0.0492 0.1486
KiDD-LR 0.0135 0.0250 0.0748

size of S is the # classes × graphs/class, and both methods’ number of the aggregation

layers as 3. Then, the wall clock time per update iteration is recorded. The wall clock time

comparison is presented in Table 5.4, from which we observe

• The efficiency of DosCond is consistent with respect to the batch size of the synthetic

graphs S. As a comparison, The efficiency of our method KiDD-LR and KiDD-D is

more sensitive to the batch size of the synthetic graphs. That is because DosCond’s

time complexity is linear with respect to BT +BS but our method needs to compute two

kernel matricesKT S andKSS whose numbers of entries are BTBS and B2
S , respectively.

Here BT , BS are the batch size of T and S, respectively.

• As we claimed, both KiDD-D and KiDD-LR cannot scale to very large batch sizes

(e.g., 1024). However, with an appropriate batch size (e.g., BT = 64 and BS = 20), two

KiDD variants, especially the KiDD-D can have comparable or even better efficiency

than DosCond. This is surprising as the DosCond solves the bi-level optimization

objective approximately, but KiDD-D provides an exact solution for the distillation

optimization objective.

Convergence Study. As a supplement to the efficiency study, a convergence study is pro-

vided which shows the models’ performance with respect to the increase of training epochs.

Here we select the PROTEINS and ogbg-molbace datasets and present the accuracy/ROC-

AUC of our proposed models KiDD-D and KiDD-LR in Figure 5.1a-5.1d which shows our

models can converge quickly within 15 epochs. Notice that in this experiment we select

the batch size of T as 256 indicating on the PROTEINS dataset, 1 epoch is equivalent to
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(a) KiDD-D on PRO-
TEINS

(b) KiDD-LR on PRO-
TEINS

(c) KiDD-D on ogbg-
molbace

(d) KiDD-LR on ogbg-
molbace

Figure 5.1: Model performance vs. training epochs.

4 update iterations, and on the ogbg-molbace dataset, 1 epoch is equivalent to 7 update

iterations. As expected, the training of KiDD-D will be more unstable compared with the

training of KiDD-LR due to the sampling operation in the forward computation.

Ablation Study. We conduct an ablation study to evaluate the effectiveness of each mod-

ule in our proposed methods. Specifically, the following models are tested: (1) KiDD-D

and KiDD-LR: two variants of our proposed KiDD; (2) KiDD-RWK: using random walk

graph kernel (i.e., Eq. (5.14a), (5.14c), and (5.14d)) to compute the kernel matrix; (3)

KiDD-D-NR and KiDD-LR-NR: removing the regularization term (i.e., Eq. (5.12)) from

the optimization objective. Datasets PROTEINS, ogbg-molbbbp, and ogbg-molbace are se-

lected, and the graphs/class is set as 50. The results are presented in Table 5.5, from which

we observe

• The performance of KiDD-RWK is significantly lower than other KiDD variants

equipped with LiteGNTK. It suggests that the random walk graph kernel (RWK)-

based ridge regression cannot provide generalizable distilled graph datasets for a GNN

classifier.

• The regularization term (i.e., Eq. (5.12)) can improve the performance of KiDD.

Including this term in the training loss, our proposed KiDD-LR and KiDD-D obtain

the best performances.

Sensitivity Study. There are three main hyperparameters of the proposed KiDD model,

ϵ from Eq. (5.11), γ from Eq. (5.13), and τ from Eq. (5.21). In this study, we conduct

experiments on the PROTEINS dataset with 50 synthetic graphs per class. The KiDD-

D variant is tested because the hyperparameter τ is only used for the discrete scenarios.

As we mentioned in the experimental settings above, we set ϵ = ϵ0 × trace(KSS)
nS

so that ϵ

is stable with respect to the number of synthetic graphs. Then, we present the model’s
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(a) Accuracy (%) vs. varying ϵ0 (b) Accuracy (%) vs. varying γ (c) Accuracy (%) vs. varying
initial τ

Figure 5.2: Hyperparameter sensitivity studies.

Table 5.5: Ablation study results (mean±std). The metric for the PROTEINS is accuracy,
and the metric for the ogbg-molbbbp and ogbg-molbace is ROC-AUC. The best is bold.

Method PROTEINS ogbg-molbbbp ogbg-molbace

KiDD-RWK 64.8±2.4 0.578±0.009 0.629±0.013

KiDD-LR-NR 72.2±2.8 0.645±0.005 0.699±0.026

KiDD-D-NR 72.0±1.5 0.634±0.030 0.713±0.013

KiDD-LR 75.6±2.3 0.663±0.016 0.724±0.020

KiDD-D 75.0±1.9 0.662±0.030 0.766±0.007

performance with varying ϵ0 in Figure 5.2a. For the different settings of hyperparameter γ,

KiDD-D’s performance is reported in Figure 5.2b. For the hyperparameter τ , as mentioned

in the hyperparameter settings, we follow the suggestions from [45, 311] and anneal the

initial τ to 0.01τ during the training process. Here we compare the performance of KiDD-

D with varying initial τ as shown in Figure 5.2c. In general, we observe that KiDD-D’s

performance is stable with respect to the selection of hyperparameters ϵ0 and γ. As τ

increases, the model’s performance becomes more and more unstable since large τ will lead

to large gradients [294] and thus affect the training stability.

Hyperparameter Settings. The parameters of the KiDD-D and KiDD-LR are set as

follows. The node scaling factor cu is set as 1 for every node u from T and S. The learning

rate of KiDD-D and KiDD-LR is searched in {1e − 1, 1e − 2, 1e − 3}. The ϵ is set as

ϵ = ϵ0 × trace(KSS)
nS

so that it is stable with respect to the size of KSS and the ϵ0 is set as

1e − 6. γ is searched in {0, 1e − 4, 1e − 3, 1e − 2}. For KiDD-D, the τ is annealed during

the training as [311] suggested. The initial τ is set as 1 and annealed to 0.01 after epoch

100. The rank r of the KiDD-LR is searched in {16, 32}. We plan to release the code upon

publication.
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5.2 FINE-GRAINED GRAPH RATIONALIZATION

Figure 5.3: Illustration of the rationale/environment decomposition and intervention. Round
nodes denote graph rationales, and square nodes (with stripes) denote the environments. The
intervention aims to ensure the rationale from graph G truly has the discriminative power
for the label yG.

5.2.1 Introduction

Rationale refers to a subset of the input features that play a crucial role in model predic-

tions for downstream tasks [312, 313, 314, 315, 316, 317]. In the context of graph machine

learning, graph rationale is defined as a subgraph of the input graph containing the most

task-relevant semantics.

The application of graph rationale is broad, for example, it can greatly enhance model

performance for graph-level tasks [314] by identifying the key components of the input graph.

Additionally, the discovery of rationales can improve model explainability [313], as it high-

lights the parts of the input graph that significantly contribute to the final prediction.

Existing graph rationalization solutions [313, 314] employ a trainable augmenter to execute

the rationale/environment decomposition. In this process, a node/edge mask is generated

by the augmenter to decompose the given graph into a rationale graph and an environment

graph. Inspired by the content-style decomposition [318], the key idea of graph rational-

ization is to preserve the utility of the graph rationale even when faced with changing

environment graphs (see Figure 5.3). To achieve this, a technique named intervention is

used, where the environment graph interacts with the rationale graph.

The intervention mechanism (named intervener) is essential in the graph rationalization

process, as it must accurately represent the interaction between the rationale and the en-

vironment. Intuitively, the intervener should work in an adversarial manner against the

augmenter mentioned above, a point not emphasized in the existing literature. If the inter-

vener is more powerful, it can capture more detailed interactions between the rationale and
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environment subgraphs. Given such a powerful intervener, the augmenter is compelled to

minimize these interactions between the graph rationale and the environment to obtain a

“purer” graph rationale.

Unfortunately, existing works develop interveners in a coarse and non-parametric manner.

After performing rationale/environment decomposition on the graph data, they compute

graph-level embeddings for the rationale and environment subgraphs. The intervention is

then designed as an interaction between these graph-level embeddings. For example, [313]

adds the environment embedding into the rationale embedding as the intervened rationale

embedding; [314] defines the intervened prediction as the Hadamard product between the

predictions based on the rationale subgraph and the environment subgraph. We argue that

such a graph-level non-parametric intervention is insufficient to represent the interaction

between the rationale and environment graphs effectively.

In response to this limitation, we propose a fine-grained, parametric intervention mecha-

nism named FIne-grained Graph rationalization (FIG) [47]. Our proposed FIG draws inspi-

ration from the self-attention module in the Transformer model, which captures interactions

between input tokens. Building upon insights from Transformer [319, 320] and its linear vari-

ant Linformer [321], FIG formulates the interaction between the rationale and environment

subgraphs at the node-level or the virtual node-level. The two variants are named FIG-N

and FIG-VN. Additionally, to maximize the effectiveness of the intervention, we formulate a

min-max game involving the node encoder, augmenter, intervener, and predictor, compelling

the rationale subgraph to be as informative as possible.

We conduct comprehensive experiments on 7 graph-level benchmarks to evaluate the pro-

posed approach and compare FIG-N/VN against 13 state-of-the-art baseline methods. The

results demonstrate that our proposed FIG and its variants outperform the baseline methods,

validating their superior performance.

5.2.2 Preliminaries

Notations. We adopt the following notation conventions: bold uppercase letters for ma-

trices and tensors (e.g., A), bold lowercase letters for column vectors (e.g., u), lowercase

and uppercase letters in regular font for scalars (e.g., d, K), and calligraphic letters for

sets (e.g., T ). To index vectors/matrices/tensors, we follow the syntax from NumPy3 (0-

based). Specifically, A[p, :] and A[:, q] represent the p-th row and the q-th column of matrix

A respectively; A[p, q] represents the entry at the p-th row and the q-th column. Similarly,

3https://numpy.org/doc/stable/index.html
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u[p] denotes the p-th entry of vector u. In addition, the slicing syntax for vectors/matri-

ces/tensors is used. For example, for a matrix A, A[i : j, :] denotes rows from the i-th row

(included) to the j-th row (excluded) and A[:, : k] denotes all the columns before the k-th

column. The superscript ⊤ denotes the transpose of matrices and vectors. ⊙ represents

the Hadamard product, and ◦ denotes function composition. We use || to represent the

concatenation operation, and the specific dimension of concatenation will be clarified based

on the context.

An attributed graph can be represented as G = (A,X,E), where A ∈ Rn×n is the adja-

cency matrix, X ∈ Rn×dX is the node feature matrix, and E ∈ Rn×n×dE is the edge feature

tensor. Here, n denotes the number of nodes, and dX (or dE) represents the dimensions of

node (or edge) features, respectively. This paper assumes the node and edge feature dimen-

sions are the same (i.e., dX = dE = d) for brevity; if they differ, a simple, fully connected

layer can map them into a common feature space. Our main focus in this paper is on graph

property prediction tasks. The ground truth of a graph is represented by y.

Graph Transformer. The core modules of the Transformer architecture [319] are the

self-attention layer and the feed-forward network layer. Given the input as a sequence of

symbol representations H ∈ Rn×dH , it is first transformed into the query, key, and value

matrices as

Q = HWQ,K = HWK ,V = HWV , (5.22)

where WQ ∈ RdH×dQ , WK ∈ RdH×dK , WV ∈ RdH×dV . For the brevity of the presentation,

we set dH = dQ = dK = dV = d. Then, the self-attention module works as,

P = attn(H) = σ(
QK⊤
√
d

), (5.23a)

H← PV +H. (5.23b)

Typically, the non-linearity σ is softmax. The feed-forward network (FFN) updates the

symbol representations H as:

H← FFN(H) +H. (5.24)

Additional techniques such as layer/batch normalization [322, 323], dropout [324], and multi-

head attention [319] can be included, but omitted here for brevity.

While Transformers was initially devised for sequence or set data with positional encod-

ing, numerous techniques have since been introduced to adapt Transformers for graph data.

Based on the taxonomy outlined by [201], most graph Transformers are designed from the
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(a) GREA [313]

(b) FIG (Ours)

Figure 5.4: Pipeline comparison between existing work, GREA, and proposed FIG. ◦ denotes
function composition. GREA designs the intervention at the graph level, while the proposed
FIG designs the intervention at the node or virtual node level. The augmented environment
H̃env is from another graph G̃ (through the Encoder and Augmenter) in the batch.

perspectives of (1) incorporating the topology encoding into the node features, (2) incor-

porating the topology encoding into the attention matrix, and (3) utilizing graph neural

networks [325] as auxiliary modules.

Interestingly, it is well-known in both the graph learning [326] and natural language pro-

cessing communities [321, 327] that, from the message-passing perspective, the key idea of

the Transformer architecture is to reconstruct a weighted complete graph, whose adjacency

matrix is P = σ
(

QK⊤
√
d

)
.

Invariant Rationale Discovery on Graphs. The graph rationale is a subgraph that

encodes most downstream task-relevant semantics. A typical example is the functional

groups in polymer graphs [313, 314], which fundamentally determines the chemical property

of polymers. Mathematically, a given graph is decomposed into a rationale graph and an

environment graph: G = Gra ∪ Genv. Commonly, the graph embeddings on Gra and Genv are

computed as hra and henv. To ensure the rationale graph is invariant w.r.t. the prediction

results when confronting different environments, a utility loss is minimized given the rationale

embedding hra intervened by the environment embedding h̃env, i.e., minLutil(hra
intervene←−−−−−
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h̃env). Here, h̃env could be either from the same graph (i.e., h̃env = henv), or could be

environment embeddings from other graphs, such as those in the batch. A key difference

among existing methods lies in the intervention operation, of which we mention two:

• GREA [313] designs the intervention as adding operation, i.e., hra + h̃env;

• DIR [314] designs the intervention as an element-wisely weighting of prediction:

θpred(hra) ⊙ sigmoid(θpred(h̃env)), where ⊙ is the Hadamard product and θpred is a

predictor.

The above intervention is conducted at the graph level because hra and f̃env are graph

embeddings. In Figure 5.4a, an overview of the GREA [313] is presented. For comparison,

we aim to design the intervention at a finer grain (e.g., node level) to handle the interaction

between the rationale and environment graphs, which will be detailed as follows.

5.2.3 Proposed Model: Encoder and Predictor

In this section, we introduce our proposed graph rationalization method, FIG. At its

core, FIG utilizes a module based on the Transformer architecture. Figure 5.4b provides an

overview of FIG, highlighting its four main parametric modules: the encoder, augmenter,

intervener, and predictor.

Encoder. The encoder, denoted as θenc : G → Rn×d, accepts a graph data as input and

produces a node embedding matrix as output. While there are various graph encoders

available, such as graph neural networks (GNNs) [325] and graph Transformers [201]. From

the methodology perspective, the encoder module is not the main contribution of this paper,

so in this section, we do not specify a specific graph encoder θenc.

Predictor. The predictor, denoted as θpred : Rd → Rc takes as input a graph embedding

and outputs a task-related vector/scalar. For graph regression tasks, c = 1; for graph

classification tasks, c is the number of classes. A typical choice of predictor is a multi-layer

perceptron (MLP) with appropriate activation functions. Details of the encoder and predictor

in our implementation are presented in Section 5.2.6.

In subsequent subsections, we will elaborate on the augmenter and intervener, two essential

modules. Their detailed designs derive two variants of the proposed FIG model.
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5.2.4 Node-Level Variant: FIG-N

Node-Level Augmenter. The augmenter is a critical module of the proposed FIG. For

the node-level variant, termed FIG-N, the augmenter’s primary function is to decompose the

node set into two distinct subsets: rationale nodes and environment nodes. This decomposi-

tion is operated by parameterizing the node-level augmenter as a learnable node partitioner,

denoted by θaug-N,

m = sigmoid(MLP(H, θaug-N)), (5.25)

whose input is the node embedding matrix H ∈ Rn×d, and its output is a partition vector

m ∈ [0, 1]n. MLP is a multi-layer perceptron. Each entry within m, such as m[i], signifies

the probability of the i-th node being categorized as a rationale node.

For the node partition vector m, its top-K entries are indexed as idxra = argtopK(m)

which is used to index the rationale nodes from the node embedding matrix H; naturally,

the remaining nodes are categorized as the environment nodes whose indices are idxenv =

{1, . . . , n} − idxra. K is a hyper-parameter whose impact is studied in Section 5.2.6. Also,

in our implementation, we use a soft argtopK operation to remain differentiability whose

details are in Section 5.2.7.

Using the indices mentioned above, rationale and environment embeddings, denoted as

Hra and Henv, respectively, can be extracted from the node embedding matrix H:

Hra = H[idxra, :] ∈ RK×d, (5.26a)

Henv = H[idxenv, :] ∈ R(n−K)×d, (5.26b)

Node-Level Intervener. The design of the fine-grained intervener draws inspiration from

the Transformer architecture [319]. Explicitly, the node-level intervener ϕ is presented as,

Hinter,P = transformer(Hra||Henv), (5.27a)

where P = attn(Hra||Henv). (5.27b)

In this representation, the operator || concatenates along the first dimension of the matrices

Hra and Henv. We dub the Eqs. (5.22)-(5.24) as transformer and P is the intermediate

attention matrix from the self-attention layer (Eq. (5.27b)). Here, the self-attention module

models the interactions between the rational nodes Hra and the environment nodes Henv. ϕ

includes all the parameters of the attn (Eq. (5.27b)) and FFN (Eq. (5.24)) modules. In some

contexts where the attention matrix P is not explicitly used as an output, input/output of

the intervener ϕ can be presented as Hinter = ϕ(Hra||Henv).

140



FIG-N Optimization Objective. The utility loss is computed as Lutil(Hra||Henv) =

Ltask(θpred ◦ Readout ◦ ϕ(Hra||Henv),y), where Ltask is the task-specific objective. For in-

stance, it could be the mean squared error for regression tasks or the cross-entropy for

classification tasks. As introduced in Figure 5.3, the core of the invariant rationale discovery

is to find the graph rationale so that the utility loss attains minimization given changing

environments. Thus, the total utility objective is

Lutil = Lutil (Hra||Henv) + αLutil
(
Hra||H̃env

)
, (5.28)

where H̃env is the node embeddings from the changing environments. In practical imple-

mentations, H̃env is the environment node embeddings from other graphs in the mini-batch.

Additionally, to fully utilize the rich interactions from the fine-grained intervention module,

we apply the following partition regularization term,

Lreg(Hra||Henv) = s⊤P(1− s) + (1− s)⊤Ps, (5.29)

where P ∈ Rn×n is the self-attention matrix from Eq. (5.27b),

s[i] =

1 if i < K.

0 otherwise.
(5.30)

0-based indexing is used so there are in total K non-zero entries (i.e., 1) in s. The meaning

of the binary s vector is to designate whether a particular row of the matrix Hra||Henv

originates from the rationale nodes or the environment nodes. The underlying notion of the

regularization term Eq. (5.29) is to impose penalties on interactions between the rationale

nodes and the environment nodes. Namely, these two terms s⊤P(1−s) and (1−s)⊤Ps denote

the total weights on the links (i.e., cut) between the rationale and environment subgraphs.

To handle the changing environments, we introduce an additional regularization term on the

changing environments as Lreg(Hra||H̃env) where H̃env is the environment node embeddings

from another graph within the same mini-batch. Then, the total regularization term is

Lreg = Lreg (Hra||Henv) + Lreg
(
Hra||H̃env

)
, (5.31)

and the total objective function is Lutil + βLreg. To fully harness the capabilities of the

fine-grained parametric intervener, it is crucial to noteas highlighted in the introductionthat

the behavior of the intervener ϕ operates in an adversarial fashion to the other modules. As
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Algorithm 5.3: FIG-N single training step for every training graph G
Input : a labelled graph (G, y), a sampled graph G̃ from the same batch as G,

θ = {θenc, θaug-N, θpred}, ϕ;
Output: updated θ and ϕ;

1 compute H = θenc(G) and H̃ = θenc(G̃);

2 compute (Hra,Henv) = θaug-N(H), (H̃ra, H̃env) = θaug-N(H̃) via Eqs. (5.25), (5.26a),
and (5.26b);

3 concatenate rationale-environment pairs Hra||Henv and Hra||H̃env;
4 compute Lutil via Eq. (5.28);
5 compute Lreg via Eqs. (5.31) and (5.30);

6 update θ via gradient descent with
∂(Lutil+βLreg)

∂θ
;

7 update ϕ via gradient ascent with
∂(Lutil+βLreg)

∂ϕ
;

a result, we formulate a min-max game that involves θ = {θenc, θaug-N, θpred} and ϕ as,

min
θ

max
ϕ

Lutil + βLreg. (5.32)

Here, the intervener ϕ is trained to decrease the utility of the graph rationale by promot-

ing interactions between the rationale nodes and the environment nodes. Conversely, the

encoder, augmenter, and predictor (i.e., θ) are optimized in an opposing manner to the

intervener’s objectives.

Complexity of FIG-N. As the encoder θenc and the predictor θpred are off-the-shelf, the

FIG-N introduces two new modules: the node-level augmenter, θaug-N, and the Transformer-

based intervener, ϕ. Notably, despite these additions, the increase in the number of parame-

ters remains modest. The parameters for θaug-N originate from the MLP defined in Eq. (5.25).

In a configuration where the MLP has 3 layers with a feature dimension of d, the parameter

count is O(2d2). The intervener ϕ, driven by the transformer layer in Eq. (5.27a), has its

parameters confined to O(3d2 + 2d2) = O(5d2), owing to its query, key, value projection

matrices and the feed-forward net (FFN from Eq. (5.24), typically a 3-layered MLP).

A step-by-step algorithm for FIG-N is in Algorithm 5.3. In test phase, the output of

θpred ◦ Readout ◦ ϕ(Hra||Henv) is evaluated.

5.2.5 Virtual Node-Level Variant: FIG-VN

In the previously introduced FIG-N, its augmenter decomposes the nodes into rationale

nodes and environment nodes via a trainable node partitioner θaug-N so that the interaction
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is conducted at the node level (Eqs. (5.27a)) whose dense attention matrix’s complexity is

quadratic in terms of the node numbers, infeasible for large graphs. This section extends

this idea to extract the graph rationale at the virtual node level, which has a lower compu-

tation complexity compared to FIG-N and provides an intermediate intervention granularity

between the node-level model (FIG-N) and the graph-level model (GREA [313]).

Virtual Node-Level Augmenter. Our idea is partly inspired by the speedup technique

from Linformer [321], which reformulates both the attention matrix and node (token) em-

bedding matrix to dimensions of Rn×r and Rr×d, respectively. This reformulation ensures

that their multiplication scales linearly with the number of nodes (tokens) n. Within this

configuration, r, a pre-defined rank, is significantly smaller than n, and d represents the

feature dimension. Drawing from the Linformer technique, we propose that the restructured

token embedding matrix, with dimensions of Rr×d, can be interpreted as embeddings for r

virtual nodes.

Building upon this insight, given node embeddings H from the encoder, the virtual node

embeddings are:

HVN = softmax(WN-VN)H. (5.33)

Here, the row-wise applied softmax function, along with

softmax(WN-VN) ∈ Rr×n, yields a trainable matrix assigning n nodes to r virtual nodes,

where r acts as a tunable hyper-parameter. In experiments, we set r = 8. As all the virtual

node embeddings are learned, a subset of the r virtual nodes can be designated as rationale

virtual nodes, whose rationality is data-driven by the intervention procedure discussed in

subsequent subsections. For brevity, the initial K virtual nodes are deemed as rationale

virtual nodes, while the last r −K nodes is considered the environment virtual node. Like

the FIG-N, here K is a hyperparameter whose impact is studied in Section 5.2.6. Thus,

rationale and environment embeddings are presented as:

Hra = HVN[: K, :] ∈ RK×d, (5.34a)

Henv = HVN[K :, :] ∈ R(r−K)×d. (5.34b)

The parameter of θaug-VN is WN-VN.

Virtual Node-Level Intervener. This section discusses the design of a virtual node-

level intervener, which parallels the framework presented in Section 5.2.4. The salient

difference lies in that the intervention here functions on the virtual nodes rather than

the given real nodes. Building upon our previous steps, we obtain the rationale virtual
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node embeddings, Hra ∈ RK×d, and the environment node embedding, Henv ∈ R(r−K)×d.

Thanks to the property of the Transformer that it can process sets with variable size,

the design of the virtual node-level intervener ϕ is similar to the node-level intervener as

Hinter,P = transformer(Hra||Henv) or short as Hinter = ϕ(Hra||Henv) if the attention ma-

trix P is not used. Notably, for FIG-VN, P ∈ Rr×r describes the interaction among the r

virtual nodes.

FIG-VN Optimization Objective. The output of θpred ◦readout◦ϕ(·) is used for mini-

mizing the utility loss Lutil = Lutil(Hra||Henv)+αLutil(Hra||H̃env), where Lutil(Hra||Henv) =

Ltask(θpred ◦readout◦ϕ(Hra||Henv),y) and Lutil(Hra||H̃env) is defined similarly. For model-

ing the changing environment, H̃env is the virtual node embeddings from other graphs in the

mini-batch. Additionally, the previously proposed regularization term Eq, (5.29) can be ex-

tended to the virtual node-level variant: Lreg(Hra||Henv) = s⊤P(1−s)+(1−s)⊤Ps. The total

regularization term, considering the changing environment H̃env, is Lreg = Lreg(Hra||Henv)+

Lreg(Hra||H̃env). As the P depicts interactions among virtual nodes, we construct the ratio-

nale/environment indicator vector s analogously to Eq. (5.30).

Put everything together, and the optimization objective of FIG-VN is minθmaxϕ Lutil +
βLreg, where θ = {θenc, θaug-VN, θpred}.

Complexity of FIG-VN. As we mentioned the encoder θenc and the predictor θpred are

off-the-shelf. Thus, the extra modules introduced by the FIG-VN are the virtual node-

level augmenter θaug-VN and the Transformer-based intervener ϕ. The parameters for θaug-VN

originate from the matrix WN-VN, as defined in Eq. (5.33). The number of these parameters

is in order O(nr), where n denotes the number of nodes. For practical implementation

purposes, n is pre-set; it is set to 10× the average size of graphs from the dataset, and we

truncate the input graphs if their size is larger than 10× the average size. The intervener

ϕ parameters originate from the transformer layer, outlined in Eq. (5.27a). The number

of parameters here is O(5d2), owing to its query, key, value projection matrices, and the

feed-forward net (Eq. (5.24), typically a 3-layered MLP).

A step-by-step algorithm for FIG-VN is in Algorithm 5.4. In test phase, the output of

θpred ◦ Readout ◦ ϕ(Hra||Henv) is evaluated.

5.2.6 Experiments

Setups. In this paper, we use 7 publicly-available real-world datasets: (1) graph classifi-

cation datasets molhiv [268], moltox21 [268], molbace [268], molbbbp [268] and (2) graph
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Algorithm 5.4: FIG-VN single training step for every training graph G
Input : a labelled graph (G, y), a sampled graph G̃ from the same batch as G,

θ = {θenc, θaug-VN, θpred}, ϕ;
Output: updated θ and ϕ;

1 compute the node embedding matrices H = θenc(G) and H̃ = θenc(G̃);
2 compute rationale and environment embeddings as (Hra,Henv) = θaug-VN(H),

(H̃ra, H̃env) = θaug-VN(H̃) via Eqs. (5.33), (5.34a), and (5.34b);

3 concatenate rationale-environment pairs Hra||Henv and Hra||H̃env;
4 compute Lutil via Eq. (5.28);
5 compute Lreg via Eqs. (5.31) and (5.30);

6 update θ via gradient descent with
∂(Lutil+βLreg)

∂θ
;

7 update ϕ via gradient ascent with
∂(Lutil+βLreg)

∂ϕ
;

Table 5.6: Effectiveness comparison (mean±std) with baseline methods. (↓) denotes the
lower the better and (↑) denotes the higher the better. Statistics in grey are reported in
the original papers. The best is bold, and the second best is underlined. N/A means the
method cannot work on regression tasks.

Graph Regression Graph Classification
Dataset ZINC AQSOL mollipo molhiv moltox21 molbace molbbbp
Metric MAE(↓) MAE(↓) RMSE(↓) AUC(↑) AUC(↑) AUC(↑) AUC(↑)

GIN 0.350±0.008 1.237±0.011 0.783±0.017 77.1±1.5 75.6±0.9 80.7±1.2 69.5±1.0

GAT 0.723±0.010 1.638±0.048 0.923±0.011 75.0±0.5 72.2±0.6 75.3±0.8 67.1±0.6

GATv2 0.729±0.015 1.722±0.022 0.943±0.021 72.2±0.5 73.6±0.2 76.8±1.6 65.7±0.7

GatedGCN 0.579±0.023 1.533±0.035 0.819±0.033 74.8±1.6 75.0±0.8 81.2±1.2 68.3±0.9

GT 0.226±0.014 1.319±0.026 0.882±0.020 73.5±0.4 75.0±0.6 77.1±2.3 65.0±1.1

GraphiT 0.202±0.011 1.162±0.005 0.846±0.023 74.6±1.0 71.8±1.3 73.4±3.6 64.6±0.5

SAN 0.139±0.006 1.199±0.218 0.816±0.112 77.9±0.2 71.3±0.8 79.0±3.1 63.8±0.9

SAT 0.094±0.008 1.236±0.023 0.835±0.008 78.8±0.6 75.6±0.7 83.6±2.1 69.6±1.3

Graphormer 0.122±0.006 1.265±0.025 0.911±0.015 79.3±0.4 77.3±0.8 79.3±3.0 67.7±0.9

GraphTrans 0.192±0.011 1.233±0.052 0.915±0.032 78.1±0.5 76.4±0.8 78.0±1.8 70.5±0.9

GPS 0.070±0.004 1.032±0.007 0.780±0.021 78.8±1.0 75.7±0.4 79.6±1.4 69.6±1.1

DIR N/A N/A N/A 77.1±0.6 73.1±0.2 74.8±0.3 70.5±1.4

GREA 0.227±0.020 1.177±0.019 0.769±0.025 79.3±0.9 78.2±0.9 82.4±2.4 69.9±1.8

FIG-N 0.095±0.008 0.990±0.012 0.708±0.013 80.1±0.7 78.8±0.5 85.3±2.0 73.8±0.7

FIG-VN 0.086±0.012 1.011±0.009 0.706±0.009 80.2±1.0 78.2±0.6 84.5±1.3 73.1±0.8

regression datasets ZINC [328], AQSOL [328], and mollipo [268]. We strictly follow the

metrics and dataset split recommended by the given benchmarks. To be concrete, the area

under the ROC curve (AUC) is the metric for datasets molhiv, moltox21, molbace, molbbbp;

root-mean-square deviation (RMSE) is the metric for dataset mollipo; mean absolute error

(MAE) is the metric for datasets ZINC and AQSOL. The detailed statistics of the datasets
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are given in Table 5.7. We report the average result with the standard deviation in 10 runs.

Table 5.7: Dataset statistics.

Name # Graphs # Nodes # Edges # Features # Classes Split Metric

ZINC 12000 23.2 49.8 21 (node), 4 (edge) N/A 10000/1000/1000 MAE
AQSOL 9833 17.6 35.8 65 (node), 5 (edge) N/A 7836/998/999 MAE
mollipo 4200 27.0 59.0 9 (node), 3 (edge) N/A 3360/420/420 RMSE
molhiv 41127 25.5 54.9 9 (node), 3 (edge) 2 32901/4113/4113 AUC

moltox21 7831 18.6 38.6 9 (node), 3 (edge) 2 6264/783/784 AUC
molbace 1513 34.4 73.7 9 (node), 3 (edge) 2 1210/151/152 AUC
molbbbp 2039 24.1 51.9 9 (node), 3 (edge) 2 1631/204/204 AUC
molmuv 93087 24.2 52.6 9 (node), 3 (edge) 2 74469/9309/9309 AUC

Our baseline methods include (1) 4 graph neural network models: GIN [329], GAT [330],

GATv2 [331], and GatedGCN [332] (2) 7 graph Transformers: GT [333], GraphiT [334],

SAN [335], SAT [326], Graphormer [336], GraphTrans [337], GPS [338], and (3) 2 graph

rationale discovery methods: DIR [314] and GREA [313].

Effectiveness Study. The effectiveness comparison between the proposed FIG-N, FIG-

VN, and baseline methods is provided in Table 5.6. To ensure a fair comparison, specific

pre-trained models, such as the pre-trained Graphormer [336], are omitted. As DIR [314]

is designed to conduct interventions on the label prediction vectors, it cannot be directly

applied to graph regression tasks.

We have several observations. First, our proposed FIG-N and FIG-VN consistently out-

perform, or are at least on par with, all the baseline methods on the graph classification and

regression datasets. Second, the virtual-node variant FIG-VN does not lead to significant

performance degradation compared to the node-level variant FIG-N.

Efficiency Study. A detailed comparison regarding the number of parameters and the

FLOPs (floating point operations) is presented in Table 5.8, where we list 4 typical 5-layered

encoders (GIN, SAT, GraphTrans, and GPS), and our proposed node-/virtual node-level

augmenter, intervener modules (i.e., {θaug-N, ϕ} and {θaug-VN, ϕ}). The comparison shows

that our proposed interveners are lightweight and incur only minor computational costs.

We also compare the model efficiency (training iterations/second) of FIG-N and FIG-

VN in Table 5.9, working with different encoders (GIN and GPS). The batch size is set as

32. We note that the inclusion of our proposed augmenter and intervener, represented as

{θaug-N, ϕ} or {θaug-VN, ϕ}, introduces a slight reduction in training speed. That is because

the proposed parametric augmenter and intervener increase the steps of the data pipeline, as

presented in figure 5.4b, and enlarge the computational graph for auto-gradient tools, such
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Table 5.8: Number of parameters and FLOPs comparisons between the proposed augmenter,
intervener, and common graph encoders.

Model # Parameters FLOPs

GIN 1, 708, 807 53, 008, 220
SAT 2, 790, 739 101, 520, 116

GraphTrans 2, 793, 307 111, 548, 906
GPS 3, 236, 239 133, 229, 235

{θaug-N, ϕ} 453, 001 31, 303, 800
{θaug-VN, ϕ} 363, 320 14, 558, 400

Table 5.9: Wall-clock time (iterations/second) comparison of different encoder-intervener
combinations. The larger, the faster. (↓) denotes the speed degradation compared with the
vanilla encoder.

Encoder Intervener mollipo molbace molbbbp

GIN
None 29.38 25.62 27.11
FIG-N 23.05(↓6.33) 21.23(↓4.39) 21.61(↓5.50)
FIG-VN 23.35(↓6.03) 21.46(↓4.16) 22.32(↓4.79)

GPS
None 24.29 20.51 22.30
FIG-N 19.57(↓4.72) 17.83(↓2.68) 18.67(↓3.63)
FIG-VN 19.93(↓4.63) 18.16(↓2.35) 18.88(↓3.42)

as PyTorch. Fortunately, the parameter count of the parametric augmenter and intervener

is low, ensuring that the overall training speed of the model is not dramatically affected.

Ablation Study. We conducted an ablation study on the proposed models, FIG-N and

FIG-VN. We designed two ablated variants as baselines: (1) θenc ◦ θpred which is a pure com-

position of the encoder θenc and the predictor θpred without any rationale discovery module.

Many of the existing graph classifiers are in this form, and here we select the GraphGPS [338],

which is also the backbone of our FIG model. (2) FIG-N w/o reg and FIG-VN w/o reg which

remove the regularization term (Eq. (5.31)) from the objective function. Our results in Ta-

ble 5.10 highlight that (1) equipped with the proposed Transformer-based intervener, the

model’s performance improves across all the datasets; e.g., the AUC is improved from 79.6%

to 84.3% (FIG-N) on the molbace dataset. (2) With the proposed regularization term, the

model’s performance can be improved further; e.g., the AUC of the FIG-N is improved from

72.3% to 73.8% on the molbbbp dataset.
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Table 5.10: Ablation study (mean±std) of the proposed model FIG. (↓) denotes the lower
the better and (↑) denotes the higher the better.

Dataset mollipo molbace molbbbp
Metric RMSE(↓) AUC(↑) AUC(↑)

θenc ◦ θpred 0.780±0.021 79.6±1.4 70.5±0.9

FIG-N w/o reg 0.736±0.022 84.3±0.7 72.3±1.0

FIG-VN w/o reg 0.758±0.018 83.2±1.5 71.9±0.7

FIG-N w/ reg 0.708±0.013 85.3±2.0 73.8±0.7

FIG-VN w/ reg 0.706±0.009 84.5±1.3 73.1±0.8

(a) molbace (b) molbbbp

Figure 5.5: Performance of FIG-N/VN with different K̂.

Sensitivity Study. In this section, we carefully study the impact of hyperparameter K

(from Eq. (5.26a), (5.26b), (5.34a), and (5.34b)), which determines the ratio of the rationale

and environment subgraphs. In our implementation, we set K = round(K̂ ×n) (for FIG-N)

or K = round(K̂ × r) (for FIG-VN). We evaluate the model performance across varying K̂

on the molbace and molbbbp datasets in Figure 5.5. We note that the model performance

degrades if most nodes/virtual nodes are marked as the environment component. Similar

performance degradation is observed if too many nodes/virtual nodes are marked as the

rationale nodes (e.g., K̂ = 0.875). That is because for a large K̂ (e.g., K̂ = 1), the model

degenerates to a vanilla graph encoder, with less intervention involved. The best performance

is observed when K̂ is set as 0.75 or 0.675.

Training Convergence. We are concerned about the impact of the min-max objective on

the training stability of FIG-N and FIG-VN. We monitor the training losses of both FIG-N

and FIG-VN across three datasets (molbace, molbbbp, mollipo) using two encoders (GIN

and GPS). The results, presented in Figure 5.6, demonstrate that the training remains stable

even when θ (representing the encoder, augmenter, and predictor) and ϕ (representing the
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(a) molbace, GIN (b) molbace, GPS (c) molbbbp, GIN

(d) molbbbp, GPS (e) mollipo, GIN (f) mollipo, GPS

Figure 5.6: Training loss of FIG-N/VN with different datasets and encoders.

intervener) engage in a min-max game.

Attention Visualization. In this section, we aim to evaluate the significance of the regu-

larization term by visualizing the adjacency matrix P, effectively the attention matrix, of the

intervener ϕ in Figure 5.7. For clarity in visualization, we choose FIG-VN. Unlike FIG-N,

which works on a variable number of nodes (from different graphs), FIG-VN maps nodes to a

predetermined number of virtual nodes, simplifying the presentation. Specifically, we set the

number of virtual nodes r to 16 with K at 10, designating 10 virtual nodes to rationales and

the remainder as environments. All the visualization results are obtained from the molbace

dataset. It is worth noting that the attention matrix P is normalized row-wise by softmax.

From our observations, we highlight two primary insights:

• Interestingly, even in the absence of the regularization term, in Figure 5.7(a), inter-

actions between rationales and environments appear significantly weaker than those

within the rationales themselves. One potential explanation is the changing nature of

the environment. In optimizing the utility loss Lutil = Ltask(Hra||Henv)

+ αLtask(Hra||H̃env), the ever-changing environment (H̃env) might lead the model to

minimize interactions between rationales and environments so that the utility of the

rationale can be ensured.

• The first observation supports our decision to introduce the regularization term, which

aims to penalize rationale-environment interactions. When the proposed regulariza-

tion term (Eq. (5.29)) is implemented, in Figure 5.7(b), there is a noticeable decline in
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Figure 5.7: Heatmap of the adjacency matrix of the intervener ϕ. (a) without the regular-
ization term Eq. (5.29) and (b) with the regularization term Eq. (5.29).

rationale-environment interactions (the off-diagonal blocks in Figure 5.7). As demon-

strated in our earlier ablation study, this results in improved model performance.

Implementation of FIG-N/VN. The encoder is set as GPS [338] on ZINC, AQSOL,

mollipo, molhiv, molbace, and set as GraphTrans [337] on moltox21 and molbbbp. We follow

the typical design for the predictor module as a 3-layered MLP with ReLU activation in the

intermediate layers. In our implementation, we set β = 2×β̂
n×(n−1)

(FIG-N) or β = 2×β̂
r×(r−1)

(FIG-VN). The α and β̂ are searched between [0.2, 2], step size 0.2. In our implementation,

the K is set as K = round(K̂ × n) (for FIG-N) or K = round(K̂ × r) (for FIG-VN). r is

searched between {8, 16, 32} for FIG-VN. We have a detailed sensitivity study to explore

the best selection of K̂ in Section 5.2.6, which shows the best K̃ is around 0.75.

Implementation of Baseline Methods. We search the number of layers of GIN [329],

GAT [330], GATv2 [331], GatedGCN [332], DIR [314], and GREA [313] between {2, 3, 5, 10}
and report the best performance, considering configurations both with and without a virtual

node connecting to all the given nodes.

Regarding the Transformer-based baselines (GT [333], GraphiT [334], SAN [335], SAT [326],

Graphormer [336], GraphTrans [337], GPS [338]), for the (absolute or relative) positional

encoding, we adhere to the suggestions made in their original papers. We also searched the

number of layers between {2, 3, 5, 10}.
Our GIN, GAT, GATv2, and GatedGCN implementations are from the PyTorch-geometric
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package. Our implementations of GT 4, GraphiT 5, SAN 6, SAT 7, Graphormer 8, Graph-

Trans 9, GPS 10, DIR 11, GREA 12 are adapted from publicly available code.

5.2.7 Soft argtop-K Trick

In the main content, for the FIG-N model, the augmenter will generate the partition

vector m which is then used to partition the node embedding matrix via selecting the top-K

indices from m:

m = sigmoid(MLP(H, θaug-N)) ∈ Rn (5.35)

idxra = argtopK(m) ∈ NK
+ (5.36)

Hra = H[idxra, :] ∈ RK×d (5.37)

Henv = H[idxenv, :] ∈ R(n−K)×d (5.38)

The hard argtopK breaks the differentiability of the model so that θaug-N has no gradient.

Here, we present a soft argtop-K trick which is inspired by the soft top-K trick13. Overall,

the key ideas are as follows,

1. The index vector idxra ∈ NK
+ can be viewed as a list of one-hot index encoding idx ∈

{0, 1}K×n whose every row is a one-hot vector. If the i-th row’s j-th element is 1, it

means the j-th element in m is the i-th largest element in m. Then, we can use the

matrix multiplication to index the matrix H:

H[idxra, :]⇐⇒ idx×H ∈ RK×d (5.39)

2. We aim to find a soft and differentiable matrix to approximate idx. The trick is to use

the fact that every row of idx is one-hot, which can be approximated by the output

of the softmax function. Hence, the implementation is to call the softmax K times

repeatedly.

4https://github.com/graphdeeplearning/graphtransformer
5https://github.com/inria-thoth/GraphiT
6https://github.com/DevinKreuzer/SAN
7https://github.com/BorgwardtLab/SAT
8https://github.com/microsoft/Graphormer
9https://github.com/ucbrise/graphtrans

10https://github.com/rampasek/GraphGPS
11https://github.com/Wuyxin/DIR-GNN
12https://github.com/liugangcode/GREA
13https://github.com/ZIB-IOL/merlin-arthur-classifiers/blob/main/soft-topk.py
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3. The parameterization trick14 can be used: y hard - y soft.detach() + y soft, whose

main idea is to ensure (1) the forward process to use the hard indexing and (2) the

backpropagation to update the soft indices.

14https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

This thesis advocates for a data-centric perspective in graph machine learning by intro-

ducing and advancing the concept of optimal graph learning. While the majority of prior

work has focused on mining given graphs using increasingly complex models, this research

shifts the emphasis toward optimizing the graph data itself to enhance the performance,

efficiency, and expressiveness of downstream tasks.

We identified and addressed three core challenges inherent to this problem: formulating

data optimization in a task-aware yet generalizable manner, managing the scalability issues

posed by large graph volumes, and capturing essential structural patterns at multiple levels

of granularity.

To tackle these challenges, we proposed a suite of solutions across three research directions:

graph refinement, graph augmentation, and graph distillation. Our methods include data-

driven techniques for noise reduction and class imbalance mitigation, structural augmenta-

tion approaches that enhance model generalizability and task compatibility, and distillation

frameworks that reduce graph complexity while preserving task-relevant information.

Together, these contributions offer a coherent and principled foundation for optimizing

graph data in machine learning workflows. They demonstrate that thoughtful manipulation

of graph structure, beyond model design alone, can yield significant gains across a wide

range of tasks. We hope this work inspires further research into data-centric methodologies

for graph machine learning and contributes to the broader paradigm shift toward optimizing

not just how we learn from graphs, but also what graphs we learn from.

6.2 FUTURE WORK

Data-centric graph machine learning remains an evolving field. Below, we outline several

promising research directions.

Large Language Models for Graphs. The application of large language models (LLMs)

across vision, language, and multimodal tasks represents a major step toward artificial gen-

eral intelligence. Recently, initial efforts have explored the potential of LLMs in graph

machine learningfor instance, leveraging LLMs to augment GNN training data [267], or

evaluating LLMs ability to reason over graph structures [339]. A common conclusion in
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these studies is that LLMs struggle to comprehend graph structures, largely due to their

limited input context and the lack of inductive bias for graph topology.

This raises an important question: is the poor performance of LLMs on graph tasks

primarily due to inadequate training data? Most LLMs are trained on general-purpose

corpora, which do not typically include structured graph data. Consequently, they fail to

perform even basic graph tasks such as identifying the largest connected component from

an edge list. A potential avenue of research is to systematically generate labeled graph-

centric tasks at scale with minimal human supervision. However, this remains non-trivial

due to the combinatorial explosion in graph states with increasing node count, as well as the

permutation invariance of graph representations.

Parallel-Sequential Hybrid Graph Generation. Current generative models can be

broadly categorized into sequential (e.g., autoregressive language models) and parallel (e.g.,

diffusion or flow-based) approaches. Sequential models typically produce higher-quality out-

puts but are computationally expensive, while parallel models are more efficient but often

sacrifice sample fidelity. Recent advances attempt to integrate both paradigms to achieve a

balance of efficiency and quality, particularly in natural language [340] and image genera-

tion [341].

Graph data, by its nature, is hierarchical, making it a promising domain for parallel-

sequential hybrid generation. For example, in social networks, communities can be modeled

as subgraphs, with inter-community interactions forming a higher-level graph. Generation

can then proceed in two stages: first, constructing the coarse-grained graph over clusters,

followed by fine-grained generation within each cluster. However, this is a complex task.

Unlike images, which can be represented as grid-like graphs with fixed dimensions, real-

world graphs exhibit unbounded variability in both the number of clusters and the size

of each subgraph. Furthermore, graph topology is fundamentally more intricate and less

structured than other modalities, posing additional challenges.
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[229] R. Mercado, T. Rastemo, E. Lindelöf, G. Klambauer, O. Engkvist, H. Chen, and
E. J. Bjerrum, “Graph networks for molecular design,” Machine Learning: Science
and Technology, vol. 2, no. 2, p. 025023, 2021.

[230] M. H. Segler, T. Kogej, C. Tyrchan, and M. P. Waller, “Generating focused molecule
libraries for drug discovery with recurrent neural networks,” ACS central science, vol. 4,
no. 1, pp. 120–131, 2018.

[231] Y. Kwon, D. Lee, Y.-S. Choi, K. Shin, and S. Kang, “Compressed graph representation
for scalable molecular graph generation,” Journal of Cheminformatics, vol. 12, pp. 1–8,
2020.

[232] J. H. Jensen, “A graph-based genetic algorithm and generative model/monte carlo tree
search for the exploration of chemical space,” Chemical science, vol. 10, no. 12, pp.
3567–3572, 2019.

[233] B. Jing, S. Gu, T. Chen, Z. Yang, D. Li, J. He, and K. Ren, “Towards
editing time series,” in Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurIPS
2024, Vancouver, BC, Canada, December 10 - 15, 2024, A. Globersons,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. M. Tomczak, and C. Zhang,
Eds., 2024. [Online]. Available: http://papers.nips.cc/paper\ files/paper/2024/hash/
423d0909791493b7c10916fd328c2913-Abstract-Conference.html

[234] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodiff:
A geometric diffusion model for molecular conformation generation,” in The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual
Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available: https:
//openreview.net/forum?id=PzcvxEMzvQC

[235] J. You, J. M. G. Selman, R. Ying, and J. Leskovec, “Identity-aware graph neural
networks,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 10 737–10 745.

[236] K. Desai and J. Johnson, “Virtex: Learning visual representations
from textual annotations,” in IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, virtual, June 19-25,
2021. Computer Vision Foundation / IEEE, 2021. [Online]. Available:
https://openaccess.thecvf.com/content/CVPR2021/html/Desai\ VirTex\ Learning\
Visual\ Representations\ From\ Textual\ Annotations\ CVPR\ 2021\ paper.html
pp. 11 162–11 173.

174



[237] G. Mittal, J. H. Engel, C. Hawthorne, and I. Simon, “Symbolic music
generation with diffusion models,” in Proceedings of the 22nd International
Society for Music Information Retrieval Conference, ISMIR 2021, Online,
November 7-12, 2021, J. H. Lee, A. Lerch, Z. Duan, J. Nam, P. Rao,
P. van Kranenburg, and A. Srinivasamurthy, Eds., 2021. [Online]. Available:
https://archives.ismir.net/ismir2021/paper/000058.pdf pp. 468–475.

[238] J. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch,
K. Millican, M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong,
S. Samangooei, M. Monteiro, J. L. Menick, S. Borgeaud, A. Brock, A. Nematzadeh,
S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman, and K. Simonyan,
“Flamingo: a visual language model for few-shot learning,” in Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., 2022. [Online]. Available: http://papers.nips.cc/paper\ files/paper/
2022/hash/960a172bc7fbf0177ccccbb411a7d800-Abstract-Conference.html

[239] H. Wang, S. Feng, T. He, Z. Tan, X. Han, and Y. Tsvetkov, “Can language
models solve graph problems in natural language?” in Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
Eds., 2023. [Online]. Available: http://papers.nips.cc/paper\ files/paper/2023/hash/
622afc4edf2824a1b6aaf5afe153fa93-Abstract-Conference.html

[240] B. Fatemi, J. Halcrow, and B. Perozzi, “Talk like a graph: Encoding graphs
for large language models,” in The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. [Online]. Available: https://openreview.net/forum?id=IuXR1CCrSi

[241] R. Ye, C. Zhang, R. Wang, S. Xu, and Y. Zhang, “Natural language
is all a graph needs,” CoRR, vol. abs/2308.07134, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2308.07134

[242] R. Chen, T. Zhao, A. K. Jaiswal, N. Shah, and Z. Wang, “Llaga: Large language and
graph assistant,” in Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. [Online]. Available:
https://openreview.net/forum?id=B48Pzc4oKi

[243] D. C. Zhang, M. Yang, R. Ying, and H. W. Lauw, “Text-attributed graph
representation learning: Methods, applications, and challenges,” in Companion
Proceedings of the ACM on Web Conference 2024, WWW 2024, Singapore, Singapore,
May 13-17, 2024, T. Chua, C. Ngo, R. K. Lee, R. Kumar, and H. W. Lauw,
Eds. ACM, 2024. [Online]. Available: https://doi.org/10.1145/3589335.3641255 pp.
1298–1301.

175



[244] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du,
A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,”
in The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. [Online]. Available:
https://openreview.net/forum?id=gEZrGCozdqR

[245] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang,
M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen,
A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robinson, D. Valter, S. Narang,
G. Mishra, A. Yu, V. Y. Zhao, Y. Huang, A. M. Dai, H. Yu, S. Petrov, E. H.
Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, “Scaling
instruction-finetuned language models,” J. Mach. Learn. Res., vol. 25, pp. 70:1–70:53,
2024. [Online]. Available: https://jmlr.org/papers/v25/23-0870.html

[246] Y. Li, H. Wen, W. Wang, X. Li, Y. Yuan, G. Liu, J. Liu, W. Xu, X. Wang, Y. Sun,
R. Kong, Y. Wang, H. Geng, J. Luan, X. Jin, Z. Ye, G. Xiong, F. Zhang, X. Li,
M. Xu, Z. Li, P. Li, Y. Liu, Y. Zhang, and Y. Liu, “Personal LLM agents: Insights
and survey about the capability, efficiency and security,” CoRR, vol. abs/2401.05459,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2401.05459

[247] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text
transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67, 2020. [Online].
Available: http://jmlr.org/papers/v21/20-074.html

[248] J. Huang, X. Zhang, Q. Mei, and J. Ma, “Can llms effectively leverage graph
structural information: When and why,” CoRR, vol. abs/2309.16595, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2309.16595

[249] D. Fu, Z. Hua, Y. Xie, J. Fang, S. Zhang, K. Sancak, H. Wu, A. Malevich,
J. He, and B. Long, “Vcr-graphormer: A mini-batch graph transformer via virtual
connections,” in The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. [Online].
Available: https://openreview.net/forum?id=SUUrkC3STJ

[250] P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
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Sweden, July 10-15, 2018, ser. Proceedings of Machine Learning Research,
J. G. Dy and A. Krause, Eds., vol. 80. PMLR, 2018. [Online]. Available:
http://proceedings.mlr.press/v80/chen18p.html pp. 941–949.

177



[258] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec, “Gnnautoscale: Scalable
and expressive graph neural networks via historical embeddings,” in Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-
24 July 2021, Virtual Event, ser. Proceedings of Machine Learning Research,
M. Meila and T. Zhang, Eds., vol. 139. PMLR, 2021. [Online]. Available:
http://proceedings.mlr.press/v139/fey21a.html pp. 3294–3304.

[259] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
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