zhe

Zhe Xu

Email: zhexu3 [at] illinois (dot) edu


I am a Ph.D. student from University of Illinois Urbana-Champaign, under the supervision of my great advisor Dr. Hanghang Tong. My research interest lies in graph machine learning under various settings such as heterogeneous networks, few-shot learning, and graph data augmentation.

Before moving to UIUC, I spent a wonderful year at Arizona State University. I got my bachelor's degree from Fudan University, under the supervision of Dr. Yanghua Xiao.

Publications

  1. Discrete-state Continuous-time Diffusion for Graph Generation
    Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Mahashweta Das, Hanghang Tong
    Preprint
    [Paper]
  2. Invariant Graph Transformer
    Zhe Xu, Menghai Pan, Yuzhong Chen, Huiyuan Chen, Yuchen Yan, Mahashweta Das, Hanghang Tong
    Preprint
    [Paper]
  3. Graph Mixup on Approximate Gromov–Wasserstein Geodesics
    Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei, Lei Ying, Jingrui He, Hanghang Tong
    ICML 2024
    [Paper]
  4. SLOG: An Inductive Spectral Graph Neural Network Beyond Polynomial Filter
    Haobo Xu, Yuchen Yan, Dingsu Wang, Zhe Xu, Zhichen Zeng, Tarek F Abdelzaher, Jiawei Han, Hanghang Tong
    ICML 2024
    [Paper]
  5. Class-Imbalanced Graph Learning without Class Rebalancing
    Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu, Kommy Weldemariam, Jingrui He, Hanghang Tong
    ICML 2024
    [Paper]
  6. Masked Graph Transformer for Large-Scale Recommendation
    Huiyuan Chen, Zhe Xu, Chin-Chia Michael Yeh, Vivian Lai, Yan Zheng, Minghua Xu, Hanghang Tong
    SIGIR 2024
    [Paper]
  7. Learning Optimal Propagation for Graph Neural Networks
    Beidi Zhao, Boxin Du, Zhe Xu, Liangyue Li, Hanghang Tong
    Preprint
    [Paper]
  8. Generalized Few-Shot Node Classification: Toward an Uncertainty-based Solution
    Zhe Xu, Kaize Ding, Yu-Xiong Wang, Huan Liu, Hanghang Tong.
    KAIS
    [Paper] [code]
  9. Calliope-Net: Automatic Generation of Graph Data Facts via Annotated Node-link Diagrams
    Qing Chen, Nan Chen, Guande Wu, Ziyan Liu, Zhe Xu, Hanghang Tong, and Nan Cao.
    TVCG 2023
    [Paper]
  10. Kernel Ridge Regression-Based Graph Dataset Distillation
    Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, Hanghang Tong.
    KDD 2023
    [Paper][code]
  11. Node Classification Beyond Homophily: Towards a General Solution
    Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang, Hanghang Tong.
    KDD 2023
    [Paper][code]
  12. Natural and Artificial Dynamics in GNNs: A Tutorial
    Dongqi Fu, Zhe Xu, Hanghang Tong, Jingrui He
    WSDM 2023
    [Tutorial]
  13. Data Augmentation for Deep Graph Learning: A Survey
    Kaize Ding, Zhe Xu, Hanghang Tong, Huan Liu
    SIGKDD explorations 2022
    [Paper] [website]
  14. Generalized Few-Shot Node Classification
    Zhe Xu, Kaize Ding, Yu-Xiong Wang, Huan Liu, Hanghang Tong.
    ICDM 2022
    [Paper] [code]
  15. Graph Sanitation with Application to Node Classification
    Zhe Xu, Boxin Du, Hanghang Tong.
    TheWebConf 2022
    [Paper] [code]
  16. DESTINE: Dense Subgraph Detection on Multi-Layered Networks
    Zhe Xu, Si Zhang, Yinglong Xia, Liang Xiong, Jiejun Xu, Hanghang Tong.
    CIKM 2021
    [Paper] [code]
  17. Ranking on Network of Heterogeneous Information Networks
    Zhe Xu, Si Zhang, Yinglong Xia, Liang Xiong, Hanghang Tong.
    IEEE Big Data 2020
    [Paper]
  18. A View-Adversarial Framework for Multi-View Network Embedding
    Dongqi Fu*, Zhe Xu*, Bo Li, Hanghang Tong, Jingrui He.
    CIKM 2020
    [Paper] [code]
  19. Relation Extraction Using Supervision from Topic Knowledge of Relation Labels
    Haiyun Jiang, Li Cui, Zhe Xu, Deqing Yang, Jindong Chen, Chenguang Li, Jingping Liu, Jiaqing Liang, Chao Wang, Yanghua Xiao, Wei Wang.
    IJCAI 2019
    [Paper]

Experience